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Abstract

Dear Aric, I have discovered that there have been some inconveniences
in our latest discussions, thus, I want to verify them. Here I would like to
clarify my point in the most convenient way. As we are both scientists,
I thought that our argument would only benefit from the clarification
of conventions we both use. In particular, it seems that we understand
limits differently. I want to show you, why am I providing you with
those counter-examples with those tricky sequences and why they still
should generate the same function, as you desire. Moreover, I shall make
a remark that your difference of series does not exist everywhere else,
except the critical line with your sequence, which makes your SSE with
the restriction to certain summation method to be just a reformulation of
the Riemann hypothesis, which cannot be considered as a proof. Later I
shall show how this difference of series changes with different summation
methods (which was exactly the point of the commenter under your video
about independent limits and that is the case, which should have been
proven impossible to make your argument valid). Moreover, while surfing
some old books on the topic I met some formulas, which are similar to
yours, but still haven’t been used in the way you suggest. Why? I want
to explain by the current paper.

1 Introduction

1.1 The definition of limit

First of all, I would like to remind the definition of limit. We say that for some
sequence {ak|k ≥ 1} a is a limit of this sequence (i.e., limk→∞ ak = a), if for
any given number ϵ > 0 there exists an integer N such that for any k > N it
holds that

|ak − a| < ϵ. (1)

Here by |.| we denote the metric, which we equip our sequence with. Indeed, we
can choose different metric properties for different objects, but we shall mostly
work with the case, when our metric is just an absolute value. I shall keep the
numeration even for this definition to make a reference in further discussion. As
you can see, the speed of convergence is not relevant, if the limit exists. In other
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words, the notion of limit should not be related to the sequence as a function of
natural numbers, but it is a property of the sequence as a set. We shall return
to this discussion in the next section, but for now I would like to reformulate
the limit definition to make it more convenient.

Lemma 1. Let A = {ak|k ≥ 1} be a sequence. Then the statement limk→∞ ak =
a is equivalent to the statement that a is the only accumulation point for any
infinite subset of A.

Proof. Suppose that limk→∞ ak = a. Then for choosing an infinite subset of A
it is enough to choose a sequence of indexes of elements of A, since each index
corresponds to a certain element of the sequence. Denote this choice of indexes
as {m(k)|k ≥ 1}, which is infinite as we discuss the infinite subset. Without
the loss of generality assume that this set of indexes is numerated in a strictly
ascending order since reindexing does not change a subset. As {m(k)|k ≥ 1} is
infinite, it grows infinitely. Then by choosing an ascending order for any ϵ > 0
we are able to choose a natural number k0 such that m(k0) > N in terms of
definition (1). By the choice of our sequence of indexes we obtain that ∀k > k0
it holds that m(k) > m(k0) and by the definition (1) we obtain the desired
implication by the definition of accumulation point, i.e., for any infinite subset
of A a is the only accumulation point. The uniqueness is obtained from the
uniqueness of the limit.

The required calculation is provided bellow. If we assume that there exists
another limit b ̸= a, we obtain that for arbitrary ϵ > 0 we obtain by using the
triangular inequality that for k > N

2ϵ > |ak − a|+ |ak − b| > |a− b|. (2)

Here we have the contradiction as ϵ > 0 is chosen arbitrary and a ̸= b implies
that there exists a positive distance between them.

Conversely, if we suppose that a is the unique accumulation point for any
infinite subset, we obtain the definition (1) by indexing the elements of chosen
subset.

1.2 The possible extensions of limit definition

As one can expect, the extension of some definition allows us to apply the certain
concept, where it is traditionally not applicable. But one condition should be
respected: the extended definition MUST work in the same way with objects,
for which it is applicable. Let us look at the most popular limit extensions. Of
course, they are summation methods, but the limit of any sequence, if it exists,
{ak|k ≥ 1} we can understand as the sum of the series a1 +

∑∞
k=1(ak+1 − ak).

We prove it as the next lemma to refer to it later.

Lemma 2. Suppose that {ak|k ≥ 1} is convergent. Then the following equality
holds.

lim
k→∞

ak = a1 +

∞∑
n=1

(an+1 − an).
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Proof. As the sum of the series is a limit of its partial sums by definition, let us
use this definition to obtain the lemma statement.

a1 +

∞∑
n=1

(an+1 − an) = lim
k→∞

(a1 +

k∑
n=1

(an+1 − an))

lim
k→∞

(a1 + (a2 − a1) + (a3 − a2) + · · ·+ (ak+1 − ak) = lim
k→∞

ak+1.

By (1) limk→∞ ak+1 = limk→∞ ak, which completes the proof.

As we have proven that any extension of summation generates the limit ex-
tension, you can see that it works for Cezaro summation (https://en.wikipedia.
org/wiki/Ces%C3%A0ro_summation) and for Abel summation (https://encyclopediaofmath.
org/wiki/Abel_summation_method). This is the difference between extension
and substitution.

1.3 ABC zeta-function and the Identity theorem

You know how fascinated with ABC zeta-function I am, so here I present a
proof of mine for ABC zeta-function representing the Riemann zeta-function
with the usage of Identity theorem. One of the purposes of mine is to show
how Identity theorem actually works and to remove one inconvenience with its
understanding.

Theorem 1. (Identity theorem, https: // en. wikipedia. org/ wiki/ Identity_
theorem ) Let f and g be two holomorphic functions defined on the domain D
(the domain is open and connected set). Suppose that f = g on some subset
S ⊂ D and S has got an accumulation point. Then f = g identically on D.

Remark 1. Connectivity is important. Indeed, by the way of contradiction let
us assume that it is not. Then let us define the domain D as a union of two
disjoint domains: D = B1(0) ∪ B1(4) =: D1 ∪ D2. Then let us define two
functions: f = 1 on D and g = 1 on D1, but g = 2 on D2. We note that f and
g are both holomorphic as they both satisfy the Cauchy-Riemann equations at
each point of D. If we drop the condition of connectivity, we can see that f = g
on D1, which consists of accumulation points. Thus, we could deduce that f = g
on D and therefore, f = g on D2 as well. But then we obtain that 1 = 2, which
is a contradiction. So we MUST have the connectivity of the set we discuss.

And when we have the Identity theorem clarified, we are ready to show
that ABC zeta-function indeed generates the analytic continuation of Riemann
zeta-function.

Theorem 2. Let s ∈ {z|ℜ(s) > 0, s ̸= 1}. Then for any b ∈ N the following
identity holds.

ζ(s) =

b∑
n=1

1

ns
− b1−s

1− s
− s

∫ ∞

b

x− ⌊x⌋
xs+1

dx.
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Proof. The domain {z|ℜ(s) > 0, s ̸= 1} =: D is obviously connected. Let us

check that
∑b

n=1
1
ns − b1−s

1−s − s
∫∞
b

x−⌊x⌋
xs+1 dx is holomorphic on s ∈ {z|ℜ(s) >

0, s ̸= 1}.
∑b

n=1
1
ns is holomorphic on D as a finite sum of exponents, b1−s

1−s
is holomorphic on D as the product of exponent and linear-fractional function

with the pole outside of D and s
∫∞
b

x−⌊x⌋
xs+1 dx is holomorphic as the product

of linear function and the absolutely convergent in the neighborhood of any s
integral of holomorphic with respect to s function. Now it remains to show that∑b

n=1
1
ns − b1−s

1−s − s
∫∞
b

x−⌊x⌋
xs+1 dx coincides with the Riemann zeta-function for

ℜ(s) > 1 and the claim is proven by Identity theorem. Set

b∑
n=1

1

ns
− b1−s

1− s
− s

∫ ∞

b

x− ⌊x⌋
xs+1

dx =: A+B + C. (3)

Consider C on ℜ(s) > 1. We obtain the following.

C = −s

∫ ∞

b

x− ⌊x⌋
xs+1

dx = −s

∫ ∞

b

dx

xs
+

∞∑
n=b

∫ n+1

n

n

xs+1
dx

= s
b1−s

1− s
+ s

1

(−s)

∞∑
n=1

[
n

(n+ 1)s
− n

ns
] = s

b1−s

1− s
+ b1−s +

∑
n=b+1

1

ns
.

Indeed, here we noticed that the series is ”telescoping”: in each next term we
add n + 1 terms of the kind 1

(n+1)s while n of those terms were subtracted by

the previous term. Now it remains to substitute this into (3) and complete the
proof.

b∑
n=1

1

ns
− b1−s

1− s
− s

∫ ∞

b

x− ⌊x⌋
xs+1

dx =

b∑
n=1

1

ns
− b1−s

1− s
+ s

b1−s

1− s
+ b1−s+

∑
n=b+1

1

ns

=

∞∑
n=1

1

ns
− b1−s

1− s
+

b1−s

1− s
=

∞∑
n=1

1

ns
,

which is precisely the definition of Riemann zeta-function for ℜ(s) > 1. Thus,
the proof is complete.

Remark 2. Here we show, how the analytic continuation should be proven and
what should be considered.

2 Building the counter-example

In this section we shall consider different approaches to understand SSE and
show that it cannot hold in any of those cases.
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2.1 Assuming the existence of the limit extension, which
makes SSE well-defined

Here we discuss the extension of limit definition to make SSE work. By the way
of contradiction, we assume that it could exist to make the difference of those
divergent series to be equal to something. As you get your series with passing
to the limit, we shall suppose that in some sense

ζ(s) = lim
k→∞

k∑
n=1

1

ns
,ℜ(s) > 0, (4)

as it was claimed in your paper before and discussed by Identity theorem. By
the section 1.2. and Lemma 1 we deduce that for this extended limit it holds
that

ζ(s) = lim
k→∞

m(k)∑
n=1

1

ns
, (5)

where {m(k)|k ≥ 1} is any infinite subsequence of natural numbers (by the
definition infinite and strictly increasing). The contradiction is implied from
the following claim.

Theorem 3. Let x ∈ R be arbitrary. Then the following identity holds.

lim
k→∞

[

⌊(k+x)2⌋∑
n=1

1√
n
−

k2∑
n=1

1√
n
] = 2x.

Proof. Assume that x is fixed. Then we consider only k large enough, for which
k + x > 1. Then by Theorem 2 we obtain two representations for ζ( 12 ).

ζ(
1

2
) =

⌊(k+x)2⌋∑
n=1

1√
n
− 2

√
⌊(k + x)2⌋+ o(1), (6)

ζ(
1

2
) =

k2∑
n=1

1√
n
− 2

√
k2 + o(1), (7)

where o(1) denotes the term, which converges to zero as k → ∞ (the integral
term in Theorem 2 is a remainder of absolutely convergent integral). After sub-
stituting (7) to (6) and passing to the limit for k → ∞ we obtain the following.

lim
k→∞

[

⌊(k+x)2⌋∑
n=1

1√
n
−

k2∑
n=1

1√
n
] = 2 lim

k→∞
(
√
⌊(k + x)2⌋ −

√
k2)

= 2 lim
k→∞

(
√
⌊(k + x)2⌋ −

√
(k + x)2 +

√
(k + x)2 −

√
k2)

= 2 lim
k→∞

(
√

⌊(k + x)2⌋−
√
(k + x)2)+2 lim

k→∞
(
√
(k + x)2−

√
k2) =: L1+L2. (8)
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Let us calculate L1 first. We want to prove that it is equal to zero. To obtain
this we dominate the absolute value of the general term of this sequence by the
general term of some sequence, which is convergent to zero and obtain the result
by the squeeze theorem.

0 ≤ |
√
⌊(k + x)2⌋ −

√
(k + x)2| = | ⌊(k + x)2⌋ − (k + x)2√

⌊(k + x)2⌋+
√

(k + x)2
|

≤ 1√
⌊(k + x)2⌋+

√
(k + x)2

→ 0, k → ∞. (9)

Here we used that the difference of any number with its integer part cannot be
greater than one. It remains to calculate L2.

2 lim
k→∞

(
√
(k + x)2 −

√
k2) = 2 lim

k→∞
(k + x− k) = 2x. (10)

After substituting (9) and (10) into (8) we obtain the theorem statement.

But if we had the extension for limit definition, which respects the classical
limit, by (4) and consequently (5) we would obtain that

∀x ∈ R2x = lim
k→∞

[

⌊(k+x)2⌋∑
n=1

1√
n
−

k2∑
n=1

1√
n
] = ζ(

1

2
)− ζ(

1

2
) = 0,

which is obviously a contradiction. Thus, there is no any limit definition,
which makes this work. To make the justification complete we should prove
that under the limit extension, which preserves analytic continuation, the limits

limk→∞
∑k2

n=1
1
ns and limk→∞

∑⌊(k+x)2⌋
n=1

1
ns generate the same function, despite

what you have told me.

Remark 3. Assume that there exists an extension of the limit definition, which
preserves the analytic continuation to the critical strip. Then the following
equality holds.

lim
k→∞

k2∑
n=1

1

ns
= lim

k→∞

⌊(k+x)2⌋∑
n=1

1

ns
,ℜ(s) ∈ (0, 1), x ∈ R

Proof. By the way of contradiction we assume that limk→∞
∑k2

n=1
1
ns ̸= limk→∞

∑⌊(k+x)2⌋
n=1

1
ns ,ℜ(s) ∈

(0, 1), x ∈ R. Let us denote f := limk→∞
∑k2

n=1
1
ns and g := limk→∞

∑⌊(k+x)2⌋
n=1

1
ns .

By the definition and Lemma 1 we obtain that for ℜ(s) > 1 we have the follow-
ing.

f(s) = lim
k→∞

k2∑
n=1

1

ns
=

∞∑
n=1

1

ns
= ζ(s) = lim

k→∞

⌊(k+x)2⌋∑
n=1

1

ns
= g(s),ℜ(s) > 1.

Since f = g on the domain ℜ(s) > 1, which consists of accumulation points as
an open set. Thus, f = g on the critical strip as well.
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2.2 Subtracting those series with a changed order of sum-
mation

It is a question, how can one subtract divergent series, when they aren’t defined.
You have suggested subtraction term-by-term. To make this possible you should
assume commutativity of terms of divergent series, i.e., you have to assume
that the order of summation does not change the sum. Indeed, in other That
is generally untrue and it is justified by the Riemann rearrangement theorem
(https://en.wikipedia.org/wiki/Riemann_series_theorem). At the point
s = 1

2 your difference appears to be the sum of two series, one of which diverges
to +∞ and the other one other one diverges to −∞. But one thing is to say
that those permutations exist and the other thing is to actually build those
permutations. Note that you can play with those permutations on the entire
critical strip. For real values of s it is given by the Riemann rearrangement
theorem and for non-real s it is given by Steinitz’s theorem (you may find it
in the section ”Generalisations” by the same link). As you can see, even in
complex analysis things appear to be a little bit more complicated ;). Theorem
3 allows us to build an exact permutation to rearrange this series.

Theorem 4. Let x ∈ R be arbitrary. Then the following identity holds.

[

⌊(max{2,−⌊x⌋+1})2⌋∑
n=1

1√
n
−

(max{2,−⌊x⌋+1})2∑
n=1

1√
n
]+

∞∑
k=max{2,−⌊x⌋+1}+1

[

⌊(k+1+x)2⌋∑
n=⌊(k+x)2⌋+1

1√
n
−

(k+1)2∑
n=k2+1

1√
n
] = 2x.

Proof. We note that for any x ∈ R we have that max{2,−⌊x⌋ + 1} + x ≥ 1,
so the summation is well-defined and we count each term exactly one time,
which makes it a well-defined permutation of the difference of series. Indeed,
for x > −1 we have that max{2,−⌊x⌋+ 1}+ x > 2− 1 = 1 and for x ≤ −1 we
have that max{2,−⌊x⌋ + 1} + x = −⌊x⌋ + 1 + x ≥ 1 as for negative numbers
−⌊x⌋+ x ≥ 0. As the sum of the series is by definition the limit of partial sums
we obtain the following with respect to Theorem 3.

[

⌊(max{2,−⌊x⌋+1}+x)2⌋∑
n=1

1√
n
−

(max{2,−⌊x⌋+1})2∑
n=1

1√
n
]+

∞∑
k=max{2,−⌊x⌋+1}+1

[

⌊(k+1+x)2⌋∑
n=⌊(k+x)2⌋+1

1√
n
−

(k+1)2∑
n=k2+1

1√
n
]

= lim
l→∞

[

⌊(max{2,−⌊x⌋+1}+x)2⌋∑
n=1

1√
n
−

(max{2,−⌊x⌋+1})2∑
n=1

1√
n
]+

l∑
k=max{2,−⌊x⌋+1}+1

[

⌊(k+1+x)2⌋∑
n=⌊(k+x)2⌋+1

1√
n
−

(k+1)2∑
n=k2+1

1√
n
]

lim
l→∞

[

⌊(l+1+x)2⌋∑
n=1

1√
n
−

(l+1)2∑
n=1

1√
n
] = 2x.

Thus, the proof is complete.
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3 Final Words

3.1 The problems with your subtraction method

For the end of the discussion I want to show, what actually happens, if we
restrict ourselves to the permutation you’ve suggested. Let us use the Theorem
2 and by the similar to yours calculation check if your representation is defined
on the critical strip at all. We obtain

ζ(s) =

b∑
n=1

1

ns
− b1−s

1− s
+ o(1), (11)

ζ(1− s̄) =

b∑
n=1

1

n1−s̄
− bs̄

s̄
+ o(1). (12)

After subtracting (12) from (11) we obtain the following after some obvious
transformations of equations and passing to the limit.

lim
b→∞

[

b∑
n=1

1

ns
−

b∑
n=1

1

n1−s̄
] = ζ(s)− ζ(1− s̄)− lim

b→∞
[
b1−s

1− s
− bs̄

s̄
]

ζ(s)− ζ(1− s̄)− lim
b→∞

b
1
2+iℑ(s)[

b
1
2−ℜ(s)

1− s
− bℜ(s)− 1

2

s̄
] (13)

From (13) we can see that your difference is not defined anywhere but the critical

strip at all. Indeed, if ℜ(s) > 1
2 , then the term bℜ(s)− 1

2

s̄ blows up to infinity,

while b
1
2−ℜ(s)

1−s tends to zero. As the result, since the difference of those terms
is infinite, the multiplication by the exponent, which also diverges to infinity,

leaves this divergent. Analogously, if ℜ(s) < 1
2 , the term b

1
2−ℜ(s)

1−s blows up to

infinity, the term bℜ(s)− 1
2

s̄ tends to zero and the similar problem occurs. As the
line ℜ(s) = 1

2 is disjoint from the domain ℜ(s) > 1, by the Remark 1 it has
no relation to Riemann zeta-function and cannot be used for the studies of its
properties.

3.2 Conclusion

Dear Aric, in the current paper I tried to explain my truth and wanted to show,
what you should expect to encounter while defending your approach. I could
entirely argue with you on interpretations, but it does not solve the problems.
Thing is that your approaches are interesting, but they do not agree with the
existing theory. I understand that you do not trust it completely. But still, to
build your own theory and invent your own mathematics you should show that
it has no contradictions and works well with your set of axioms. You see the
current problems and I wish you the best in solving them. I am looking forward
to see the beautiful building of your theory, when it is ready!
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