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When is .999... less than 1?

Karin Usadi Katz and Mikhail G. Katz0

We examine alternative interpretations of the symbol described as nought, point, nine

recurring . Is “an infinite number of 9s” merely a figure of speech? How are such al-
ternative interpretations related to infinite cardinalities? How are they expressed in
Lightstone’s “semicolon” notation? Is it possible to choose a canonical alternative inter-
pretation? Should unital evaluation of the symbol .999 . . . be inculcated in a pre-limit
teaching environment? The problem of the unital evaluation is hereby examined from
the pre-R, pre-lim viewpoint of the student .

1. Introduction

Leading education researcher and mathematician D. Tall [63] comments that a mathe-
matician “may think of the physical line as an approximation to the infinity of numbers,
so that the line is a practical representation of numbers[, and] of the number line as a
visual representation of a precise numerical system of decimals.” Tall concludes that
“this still does not alter the fact that there are connections in the minds of students
based on experiences with the number line that differ from the formal theory of real
numbers and cause them to feel confused.”

One specific experience has proved particularly confusing to the students, namely their
encounter with the evaluation of the symbol .999 . . . to the standard real value 1. Such
an evaluation will be henceforth referred to as the unital evaluation.

We have argued [32] that the students are being needlessly confused by a premature
emphasis on the unital evaluation, and that their persistent intuition that .999 . . . can fall
short of 1, can be rigorously justified. Other interpretations (than the unital evaluation)
of the symbol .999 . . . are possible, that are more in line with the students’ naive initial
intuition, persistently reported by teachers. From this viewpoint, attempts to inculcate
the equality .999 . . . = 1 in a teaching environment prior to the introduction of limits
(as proposed in [65]), appear to be premature.

0Supported by the Israel Science Foundation (grants no. 84/03 and 1294/06).
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To be sure, certain student intuitions are clearly dysfunctional, such as a perception
that ∀ε∃δ and ∃δ∀ε are basically “the same thing”. Such intuitions need to be uprooted.
However, a student who intuits .999 . . . as a dynamic process (see R. Ely [23, 24]) that
never quite reaches its final address, is grappling with a fruitful cognitive issue at the level
of the world of proceptual symbolism, see Tall [63]. The student’s functional intuition
can be channeled toward mastering a higher level of abstraction at a later, limits/R

stage.
In ’72, A. Harold Lightstone published a text entitled Infinitesimals in the American

Mathematical Monthly [38]. If ε > 0 is infinitesimal (see Appendix A), then 1 − ε is
less than 1, and Lightstone’s extended decimal expansion of 1− ε starts with more than
any finite number of repeated 9s.1 Such a phenomenon was briefly mentioned by Sad,
Teixeira, and Baldino [51, p. 286].

The symbol .999 . . . is often said to possess more than any finite number of 9s. How-
ever, describing the real decimal .999 . . . as possessing an infinite number of 9s is only a
figure of speech, as infinity is not a number in standard analysis.

The above comments have provoked a series of thoughtful questions from colleagues,
as illustrated below in a question and answer format perfected by Imre Lakatos in [37].

2. Frequently asked questions: when is .999 . . . less than 1?

Question 2.1. Aren’t there many standard proofs that 0.999 . . . = 1? Since we can’t
have that and also 0.999 . . . 6= 1 at the same time, if mathematics is consistent, then
isn’t there necessarily a flaw in your proof?

Answer. The standard proofs2 are of course correct, in the context of the standard real
numbers. However, the annals of the teaching of decimal notation are full of evidence
of student frustration with the unital evaluation of .999 . . . This does not mean that we
should tell the students an untruth. What this does mean is that it may be instructive
to examine why exactly the students are frustrated.

Question 2.2. Why are the students frustrated?

Answer. The important observation here is that the students are not told about either
of the following two items:

(1) the real number system;
(2) limits,

before they are exposed to the topic of decimal notation, as well as the problem of
unital evaluation. What we point out is that so long as the number system has not
been specified explicitly, the students’ hunch that .999 . . . falls infinitesimally short of 1
can be justified in a rigorous fashion, in the framework of Abraham Robinson’s [47, 48]
non-standard analysis.1

1 By the work of J. Avigad [3], the phenomenon can already be expressed in primitive recursive
arithmetic, in the context of Skolem’s non-standard models of arithmetic, see answer to Questions 6.1
and 6.2 below.

2The proof exploiting the long division of 1 by 3, is dealt with in the answer to Question 8.1.
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Question 2.3. Isn’t it a problem with the proof that the definitions aren’t precise?
You say that 0.999 . . . has an “unbounded number of repeated digits 9”. That is not a
meaningful mathematical statement; there is no such number as “unbounded”. If it is
to be precise, then you need to provide a formal definition of “unbounded”, which you
have not done.

Answer. The comment was not meant to be a precise definition. The precise definition
of .999 . . . as a real number is well known. The thrust of the argument is that before

the number system has been explicitly specified, one can reasonably consider that the
ellipsis “...” in the symbol .999 . . . is in fact ambiguous. From this point of view, the
notation .999 . . . stands, not for a single number, but for a class of numbers,3 all but one
of which are less than 1.

Note that F. Richman [46] creates a natural semiring (in the context of decimal ex-
pansions), motivated by constructivist considerations, where certain cancellations are
disallowed (as they involve infinite “carry-over”). The absence of certain cancellations
(i.e. subtractions) leads to a system where a strict inequality .999 . . . < 1 is satisfied.
The advantage of the hyperreal approach is that the number system remains a field,
together with the extension principle and the transfer principle (see Appendix A).

Question 2.4. Doesn’t decimal representation have the same meaning in standard anal-
ysis as non-standard analysis?

Answer. Yes and no. Lightstone [38] has developed an extended decimal notation4

that gives more precise information about the hyperreal. In his notation, the standard
real .999 . . . would appear as

.999 . . . ; . . . 999 . . .

Question 2.5. Since non-standard analysis is a conservative extension of the standard
reals, shouldn’t all existing properties of the standard reals continue to hold?

Answer. Certainly, .999 . . . ; . . . 999 . . . equals 1, on the nose, in the hyperreal number
system, as well. An accessible account of the hyperreals can be found in chapter 6:
Ghosts of departed quantities of Ian Stewart’s popular book From here to infinity [55].
In his unique way, Stewart has captured the essense of the issue as follows in [56, p. 176]:

The standard analysis answer is to take ‘. . .’ as indicating passage to a
limit. But in non-standard analysis there are many different interpreta-
tions.

In particular, a terminating infinite decimal .999 . . . ; . . . 999 is less than 1.

Question 2.6. Your expression “terminating infinite decimals” sounds like gibberish.
How many decimal places do they have exactly? How can infinity terminate?

Answer. If you are troubled by this, you are in good company. A remarkable passage
by Leibniz is a testimony to the enduring appeal of the metaphor of infinity, even in its,

3For a more specific choice of such a number, see the answer to Question 8.3.
4For details see Appendix A, item A.11 below.
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paradoxically, terminated form. In a letter to Johann Bernoulli dating from june 1698
(as quoted in Jesseph [30, Section 5]), Leibniz speculated concerning

lines [...] which are terminated at either end, but which nevertheless are
to our ordinary lines, as an infinite to a finite.

He further speculates as to the possibility of

a point in space which can not be reached in an assignable time by uniform
motion. And it will similarly be required to conceive a time terminated
on both sides, which nevertheless is infinite, and even that there can be
given a certain kind of eternity [...] which is terminated.

Ultimately, Leibniz rejected any metaphysical reality of such quantities, and conceived
of both infinitesimals and infinite quantities as ideal numbers, falling short of the reality
of the familiar appreciable quantities.5

Question 2.7. You say that in Lightstone’s notation, the nonstandard number repre-
sented by .999 . . . ; . . . 999̂ is less 1. Wouldn’t he consider this as something different
from .999 . . ., since he uses a different notation, and that he would say

.999 . . . ; . . . 999̂ < .999 . . . = 1?

Answer. Certainly.

Question 2.8. Aren’t you arbitrarily redefining .999 . . . as equal to the non-standard
number .999 . . . ; . . . 999̂, which would contradict the standard definition?

Answer. No, the contention is that the ellipsis notation is ambiguous, particularly as
perceived by pre-lim, pre-R students. The notation could reasonably be applied to a
class of numbers6 infinitely close to 1.

Question 2.9. You claim that “there is an unbounded number of 9s in .999 . . ., but
saying that it has infinitely many 9s is only a figure of speech”. Now there are several
problems with such a claim. First, there is no such object as an “unbounded number”.
Second, “infinitely many 9s” not a figure of speech, but rather quite precise. Doesn’t
“infinite” in this context mean the countable cardinal number, ℵ0 in Cantor’s notation?

Answer. One can certainly choose to call the output of a series whatever one wishes.
The terminology “infinite sum” is a useful and intuitive term, when it comes to under-
standing standard calculus. In other ways, it can be misleading. Thus, the term contains
no hint of the fact that such an “ℵ0-fold sum” is only a partial operation, unlike the
inductively defined n-fold sums. Namely, a series can diverge, in which case the infinite
sum is undefined (to be sure, this does not happen for decimal series representing real
numbers).

5Ely [24] presents a case study of a student who naturally developed an intuitive system of infinites-
imals and infinitely large quantities, bearing a striking resemblance to Leibniz’s system. Ely concludes:
“By recognizing that some student conceptions that appear to be misconceptions are in fact nonstan-
dard conceptions, we can see meaningful connections between cognitive structures and mathematical
structures of the present and past that otherwise would have been overlooked.”

6For a more specific choice of such a number, see the answer to Question 8.3.
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Furthermore, the “ℵ0-fold sum” intuition creates an impediment to understanding
Lightstone extended decimals

.a1a2a3 . . . ; . . . aH . . .

If one thinks of the standard real as an ℵ0-fold sum of the countably many terms such
as a1/10, a2/100, a3/1000, etc., then it may appear as though Lightstone’s extended
decimals add additional positive (infinitesimal) terms to the real value one started with
(which seems to be already “present” to the left of the semicolon). It then becomes
difficult to understand how such an extended decimal can represent a number less than 1.

For this reason, it becomes necessary to analyze the infinite sum figure of speech, with
an emphasis on the built-in limit.

Question 2.10. Are you trying to convince me that the expression infinite sum, rou-
tinely used in Calculus, is only a figure of speech?

Answer. The debate over whether or not an infinite sum is a figure of speech, is in a
way a re-enactment of the foundational debates at the end of the 17th and the beginning
of the 18th century, generally thought of as a Newton-Berkeley debate.7 The founders
of the calculus thought of

(1) the derivative as a ratio of a pair of infinitesimals, and of
(2) the integral as an infinite sum of terms f(x)dx.

Bishop Berkeley [8] most famously8 criticized the former in terms of the familiar ghosts

of departed quantities (see [55, Chapter 6]) as follows. The infinitesimal

dx

appearing in the denominator is expected, at the beginning of the calculation, to be
nonzero (the ghosts), yet at the end of the calculation it is neglected as if it were zero
(hence, departed quantities). The implied stripping away of an infinitesimal at the end
of the calculation occurs in evaluating an integral, as well.

To summarize, the integral is not an infinite Riemann sum, but rather the standard
part of the latter (see Section A, item A.12). From this viewpoint, calling it an infinite
sum is merely a figure of speech, as the crucial, final step is left out.

A. Robinson solved the 300-year-old logical inconsistency of the infinitesimal definition
of the integral, in terms of the standard part function.9

Question 2.11. Hasn’t historian Bos criticized Robinson for being excessive in enlisting
Leibniz for his cause?

Answer. In his essay on Leibniz, H. Bos [17, p. 13] acknowledged that Robinson’s
hyperreals provide

[a] preliminary explanation of why the calculus could develop on the in-
secure foundation of the acceptance of infinitely small and infinitely large
quantities.

7See footnote 28 for a historical clarification.
8Similar criticisms were expressed by Rolle, thirty years earlier; see Schubring [52].
9See Appendix A, item A.3.
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F. Medvedev [41, 42] further points out that

[n]onstandard analysis makes it possible to answer a delicate question
bound up with earlier approaches to the history of classical analysis. If
infinitely small and infinitely large magnitudes are regarded as incon-
sistent notions, how could they serve as a basis for the construction of
so [magnificent] an edifice of one of the most important mathematical
disciplines?

3. Is infinite sum a figure of speech?

Question 3.1. Perhaps the historical definition of an integral, as an infinite sum of
infinitesimals, had been a figure of speech. But why is an infinite sum of a sequence of
real numbers more of a figure of speech than a sum of two real numbers?

Answer. Foundationally speaking, the two issues (integral and infinite sum) are closely
related. The series can be described cognitively as a proceptual encapsulation of a
dynamic process suggested by a sequence of finite sums, see D. Tall [63]. Mathematically
speaking, the convergence of a series relies on the completeness of the reals, a result
whose difficulty is of an entirely different order compared to what is typically offered as
arguments in favor of unital evaluation.

The rigorous justification of the notion of an integral is identical to the rigorous
justification of the notion of a series. One can accomplish it finitistically with epsilontics,
or one can accomplish it infinitesimally with standard part. In either case, one is dealing
with an issue of an entirely different nature, as compared to finite n-fold sums.

Question 3.2. You have claimed that “saying that it has an infinite number of 9s is
only a figure of speech”. Of course “infinity” is not a number in standard analysis: this
word refers to a number in the cardinal number system, i.e. the cardinality10 of the
number of digits; it does not refer to a number in the real number system.

Answer. One can certainly consider an infinite string of 9s labeled by the standard
natural numbers. However, when challenged to write down a precise definition of .999 . . .,
one invariably falls back upon the limit concept (and presumably the respectable ep-
silon, delta definition thereof). Thus, it turns out that .999 . . . is really the limit of the
sequence .9, .99, .999, etc.11 Note that such a definition never uses an infinite string of
9s labeled by the standard natural numbers, but only finite fragments thereof.

Informally, when the students are confronted with the problem of the unital evaluation,
they are told that the decimal in question is zero, point, followed by infinitely many 9s.
Well, taken literally, this describes the hyperreal number

.999 . . . ; . . . 999000

perfectly well: we have zero, point, followed by H-infinitely many 9s. Moreover, this
statement in a way is truer than the one about the standard decimal, as explained above

10See more on cardinals in answer to Question 6.1.
11The related sequence .3, .33, .333, etc. is discussed in the answer to Question 8.1.

8
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(the infinite string is never used in the actual standard definition). The hyperreal is an
infinite sum, on the nose. It is not a limit of finite sums.

Question 3.3. Do limits have a role in the hyperreal approach?

Answer. Certainly. Let u1 = .9, u2 = .99, u3 = .999, etc. Then the limit, from the
hyperreal viewpoint, is the standard part of uH for any infinite hyperinteger H. The
standard part strips away the (negative) infinitesimal, resulting in the standard value 1,
and the students are right almost everywhere.

Question 3.4. A mathematical notation is whatever it is defined to be, no more and
no less. Isn’t .999 . . . defined to be equal to 1?

Answer. As far as teaching is concerned, it is not necessarily up to research mathemati-
cians to decide what is good notation and what is not, but rather should be determined
by the teaching profession and its needs, particularly when it comes to students who
have not yet been introduced to R and lim.

Question 3.5. In its normal context, .999 . . . is defined unambiguously, shouldn’t it
therefore be taught as a single mathematical object?

Answer. Indeed, in the context of ZFC standard reals and the appropriate notion of
limit, the definition is unambiguous. The issue here is elsewhere: what does .999 . . . look

like to highschoolers when they are exposed to the problem of unital evaluation, before

learning about R and lim.12

Question 3.6. Don’t standard analysis texts provide a unique definition of .999 . . . that
is almost universally accepted, as a certain infinite sum that (independently) happens
to evaluate to 1?

Answer. More precisely, it is a limit of finite sums, whereas “infinite sum” is a figu-
rative way of describing the limit. Note that the hyperreal sum from 1 to H, where H
is an infinite hyperinteger, can also be described as an “infinite sum”, or more precisely
H-infinite sum, for a choice of a hypernatural number H.

Question 3.7. There are certain operations that happen to work with “formal” ma-
nipulation, such as dividing each digit by 3 to result13 in 0.333 . . . But shouldn’t such
manipulation be taught as merely a convenient shortcut that happens to work but needs
to be verified independently with a rigorous argument before it is accepted?

Answer. Correct. The best rigorous argument, of course, is that the sequence

〈.9, .99, .999, . . .〉
gets closer and closer to 1 (and therefore 1 is the limit by definition). The students would
most likely find the remark before the parenthesis, unobjectionable. Meanwhile, the
parenthetical remark is unintelligible to them, unless they have already taken calculus.

12A preferred choice of a hyperreal evaluation of the symbol “.999 . . .” is described in the answers to
Questions 8.2, 8.3, and 8.4.

13The long division of 1 by 3 and its implications for unital evaluation are discussed in detail in the
answer to Question 8.1.
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4. Meanings, standard and non-standard

Question 4.1. Isn’t it very misleading to change the standard meaning of .999 . . .,
even though it may be convenient? This is in the context of standard analysis, since
non-standard analysis is not taught very often because it has its own set of issues and
complexities.

Answer. In the fall of ’08, a course in calculus was taught using H. Jerome Keisler’s
textbook Elementary Calculus [33]. The course was taught to a group of 25 freshmen.
The TA had to be trained as well, as the material was new to the TA. The students
have never been so excited about learning calculus, according to repeated reports from
the TA. Two of the students happened to be highschool teachers (they were somewhat
exceptional in an otherwise teenage class). They said they were so excited about the new
approach that they had already started using infinitesimals in teaching basic calculus
to their 12th graders. After the class was over, the TA paid a special visit to the
professor’s office, so as to place a request that the following year, the course should
be taught using the same approach. Furthermore, the TA volunteered to speak to the
chairman personally, so as to impress upon him the advantages of non-standard calculus.
The .999 . . . issue was not emphasized in the class.14

Question 4.2. Non-standard calculus? Didn’t Errett Bishop explain already that non-
standard calculus constituted a debasement of meaning?

Answer. Bishop did refer to non-standard calculus as a debasement of meaning in his
Crisis text [13] from ’75. He clarified what it was exactly he had in mind when he used
this expression, in his Schizophrenia text [15]. The latter text was distributed two years
earlier, more precisely in ’73, according to M. Rosenblatt [50, p. ix]. Bishop writes as
follows [15, p. 1]:

Brouwer’s criticisms of classical mathematics [emphasis added–MK]
were concerned with what I shall refer to as “the debasement of meaning”.

In Bishop’s own words, the debasement of meaning expression, employed in his Crisis

text to refer to non-standard calculus, was initially launched as a criticism of classical

mathematics as a whole. Thus his criticism of non-standard calculus was foundationally,
not pedagogically, motivated.

In a way, Bishop is criticizing apples for not being oranges: the critic (Bishop) and
the criticized (Robinson’s non-standard analysis) do not share a common foundational
framework. Bishop’s preoccupation with the extirpation of the law of excluded middle
(LEM)15 led him to criticize classical mathematics as a whole in as vitriolic16 a manner
as his criticism of non-standard analysis.

14Hyperreal pedagogy is analyzed in the answer to Question 6.10.
15A defining feature of both intuitionism and Bishop’s constructivism is a rejection of LEM; see

footnote 35 for a discussion of Bishop’s foundational posture within the spectrum of Intuitionistic
sensibilities.

16Historian of mathematics J. Dauben noted the vitriolic nature of Bishop’s remarks, see [22, p. 139];
M. Artigue [2] described them as virulent ; D. Tall [61], as extreme.

10
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Question 4.3. Something here does not add up. If Bishop was opposed to the rest of
classical mathematics, as well, why did he reserve special vitriol for his book review of
Keisler’s textbook on non-standard calculus?

Answer. Non-standard analysis presents a formidable philosophical challenge to Bish-
opian constructivism, which may, in fact, have been anticipated by Bishop himself in his
foundational speculations, as we explain below.

While Bishop’s constructive mathematics (unlike Brouwer’s intuitionism17 ) is uniquely
concerned with finite operations on the integers, Bishop himself has speculated that “the
primacy of the integers is not absolute” [12, p. 53]:

It is an empirical fact [emphasis added–MK] that all [finitely per-
formable abstract calculations] reduce to operations with the integers.
There is no reason mathematics should not concern itself with finitely
performable abstract operations of other kinds, in the event that such are
ever discovered [...]

Bishop hereby acknowledges that the primacy of the integers is merely an empirical fact ,
i.e. an empirical observation, with the implication that the observation could be con-
tradicted by novel mathematical developments. Non-standard analysis, and particularly
non-standard calculus, may have been one such development.

Question 4.4. How is a theory of infinitesimals such a novel development?

Answer. Perhaps Bishop sensed that a rigorous theory of infinitesimals is both

• not reducible to finite calculations on the integers, and yet
• accomodates a finite performance of abstract operations,

thereby satisfying his requirements for coherent mathematics. Having made a founda-
tional commitment to the primacy of the integers (a state of mind known as integr-ity in
Bishopian constructivism; see [15, p. 4]) through his own work and that of his disciples
starting in the late sixties, Bishop may have found it quite impossible, in the seventies, to
acknowledge the existence of “finitely performable abstract operations of other kinds”.

Birkhoff reports that Bishop’s talk at the workshop was not well-received.18 The list
of people who challenged him (on a number of points) in the question-and-answer session
that followed the talk, looks like the who-is-who of 20th century mathematics.

Question 4.5. Why didn’t all those luminaries challenge Bishop’s debasement of non-
standard analysis?

Answer. The reason is a startling one: there was, in fact, nothing to challenge him
on. Bishop did not say a word about non-standard analysis in his oral presentation,
according to a workshop participant [40] who attended his talk.19 Bishop appears to

17Bishop rejected both Kronecker’s finitism and Brouwer’s theory of the continuum.
18See Dauben [22, p. 133] in the name of Birkhoff [10, p. 505].
19The participant in question, historian of mathematics P. Manning, was expecting just this sort of

critical comment about non-standard analysis from Bishop, but the comment never came. Manning
wrote as follows on the subject of Bishop’s statement on non-standard calculus published in the written
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have added the debasement comment after the workshop, at the galley proof stage of
publication. This helps explain the absence of any critical reaction to such debasement

on the part of the audience in the discussion session, included at the end of the published
version of Bishop’s talk.

Question 4.6. On what grounds did Bishop criticize classical mathematics as deficient
in numerical meaning?

Answer. The quest for greater numerical meaning is a compelling objective for many
mathematicians. Thus, as an alternative to an indirect proof (relying on LEM) of the
irrationality of

√
2, one may favor a direct proof of a concrete lower bound, such as 1

3n2

for the error |
√

2 − m

n
| involved. Bishop discusses this example in [15, p. 18]. More

generally, one can develop a methodology that seeks to enhance classical arguments by
eliminating the reliance on LEM, with an attendant increase in numerical meaning. Such
a methodology can be a useful companion to classical mathematics.

Question 4.7. Given such commendable goals, why haven’t mainstream mathemati-
cians adopted Bishop’s constructivism?

Answer. The problem starts when LEM-extirpation is elevated to the status of the
supreme good, regardless of whether it is to the benefit, or detriment, of numerical
meaning. Such a radical, anti-LEM species of constructivism tends to be posited, not as a
companion, but as an alternative, to classical mathematics. Philosopher of mathematics
G. Hellman [28, p. 222] notes that “some of Bishop’s remarks (1967) suggest that his
position belongs in [the radical constructivist] category”.

For instance, Bishop wrote [12, p. 54] that “[v]ery possibly classical mathematics
will cease to exist as an independent discipline.” He challenged his precursor Brouwer
himself, by describing the latter’s theory of the continuum as a “semimystical theory”
[11, p. 10]. Bishop went as far as evoking the term “schizophrenia in contemporary
mathematics”, see [15].

Question 4.8. How can the elimination of the law of excluded middle be detrimental
to numerical meaning?

Answer. In the context of a discussion of the differentiation procedures in Leibniz’s
infinitesimal calculus, D. Jesseph [30, Section 1] points out that

[t]he algorithmic character of this procedure is especially important, for
it makes the calculus applicable to a vast array of curves whose study had
previously been undertaken in a piecemeal fashion, without an underlying
unity of approach.

version [13] of his talk: “I do not remember that any such statement was made at the workshop
and doubt seriously that it was in fact made. I would have pursued the issue vigorously, since I
had a particular point of view about the introduction of non-standard analysis into calculus. I had
been considering that question somewhat in my attempts to understand various standards of rigor in
mathematics. The statement would have fired me up.”

12
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The algorithmic, computational, numerical meaning of such computations persists after
infinitesimals are made rigorous in Robinson’s approach, relying as it does on classical
logic, incorporating the law of excluded middle (LEM).

To cite an additional example, note that Euclid himself has recently been found lack-
ing, constructively speaking, by M. Beeson [7]. The latter rewrote as many of Eu-
clid’s geometric constructions as he could while avoiding “test-for-equality” construc-
tions (which rely on LEM). What is the status of those results of Euclid that resisted
Beeson’s reconstructivisation? Are we prepared to reject Euclid’s constructions as lack-
ing in meaning, or are we, rather, to conclude that their meaning is of a post-LEM
kind?

Question 4.9. Are there examples of post-LEM numerical meaning from contemporary
research?

Answer. In contemporary proof theory, the technique of proof mining is due to Kohlen-
bach, see [35]. A logical analysis of classical proofs (i.e., proofs relying on classical logic)
by means of a proof-theoretic technique known as proof mining, yields explicit numerical
bounds for rates of convergence, see also Avigad [4].

Question 4.10. But hasn’t Bishop shown that meaningful mathematics is mathematics
done constructively?

Answer. If he did, it was by a sleight-of-hand of a successive reduction of the meaning
of “meaning”. First, “meaning” in a lofty epistemological sense is reduced to “numerical
meaning”. Then “numerical meaning” is further reduced to the avoidance of LEM.

Question 4.11. Haven’t Brouwer and Bishop criticized formalism for stripping math-
ematics of any meaning?

Answer. Thinking of formalism in such terms is a common misconception. The fallacy
was carefully analyzed by Avigad and Reck [5].

From the cognitive point of view, the gist of the matter was summarized in an acces-
sible fashion by D. Tall [63, chapter 12]:

The aim of a formal approach is not the stripping away of all human
intuition to give absolute proof, but the careful organisation of formal
techniques to support human creativity and build ever more powerful
systems of mathematical thinking.

Hilbert sought to provide a finitistic foundation for mathematical activity, at the meta-
mathematical level. He was prompted to seek such a foundation as an alternative to set
theory, due to the famous paradoxes of set theory, with “the ghost of Kronecker” (see [5])
a constant concern. Hilbert’s finitism was, in part, a way of answering Kronecker’s
concerns (which, with hindsight, can be described as intuitionistic/constructive).

Hilbert’s program does not entail any denial of meaning at the mathematical level.
A striking example mentioned by S. Novikov [44] is Hilbert’s Lagrangian for general
relativity, a deep and meaningful contribution to both mathematics and physics. Un-
fortunately, excessive rhetoric in the heat of debate against Brouwer had given rise to
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the famous quotes, which do not truly represent Hilbert’s position, as argued in [5].
Hilbert’s Lagrangian may in the end be Hilbert’s most potent criticism of Brouwer, as
variational principles in physics as yet have no intuitionistic framework, see [6, p. 22].

Question 4.12. Why would one want to complicate the students’ lives by introducing
infinitesimals? Aren’t the real numbers complicated enough?

Answer. The traditional approach to calculus using Weierstrassian epsilontics (the
epsilon-delta approach) is a formidable challenge to even the gifted students.20 Infinites-
imals provide a means of simplifying the technical aspect of calculus, so that more time
can be devoted to conceptual issues.

5. Halmos on infinitesimal subtleties

Question 5.1. Aren’t you exaggerating the difficulty of Weierstrassian epsilontics, as
you call it? If it is so hard, why hasn’t the mathematical community discovered this
until now?

Answer. Your assumption is incorrect. Some of our best and brightest have not only
acknowledged the difficulty of teaching Weierstrassian epsilontics, but have gone as far
as admitting their own difficulty in learning it! For example, Paul Halmos recalls in his
autobiography [27, p. 47]:

... I was a student, sometimes pretty good and sometimes less good.
Symbols didn’t bother me. I could juggle them quite well ...[but] I was
stumped by the infinitesimal subtleties of epsilonic analysis. I could read
analytic proofs, remember them if I made an effort, and reproduce them,
sort of, but I didn’t really know what was going on.

(quoted in A. Sfard [53, p. 44]). The eventual resolution of such pangs in Halmos’ case
is documented by Albers and Alexanderson [1, p. 123]:

... one afternoon something happened ... suddenly I understood epsilon.
I understood what limits were ... All of that stuff that previously had not
made any sense became obvious ...

Is Halmos’ liberating experience shared by a majority of the students of Weierstrassian
epsilontics?

Question 5.2. I don’t know, but how can one possibly present a construction of the
hyperreals to the students?

Answer. You are surely aware of the fact that the construction of the reals (Cauchy se-
quences or Dedekind cuts) is not presented in a typical standard calculus class.21 Rather,
the instructor relies on intuitive descriptions, judging correctly that there is no reason
to get bogged down in technicalities. There is no more reason to present a construction

20including Paul Halmos; see [53], as well as the answer to Question 5.1 below.
21The issue of constructing number systems is discussed further in the answers to Questions 7.1 and

7.3.
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of infinitesimals, either, so long as the students are given clear ideas as to how to per-
form arithmetic operations on infinitesimals, finite numbers, and infinite numbers. This
replaces the rules for manipulating limits found in the standard approach.22

Question 5.3. Non-standard analysis? Didn’t Halmos explain already that it is too
special?

Answer. P. Halmos did describe non-standard analysis as a special tool, too special

[27, p. 204]. In fact, his anxiousness to evaluate Robinson’s theory may have involved
a conflict of interests. In the early ’60s, Bernstein and Robinson [9] developed a non-
standard proof of an important case of the invariant subspace conjecture of Halmos’, and
sent him a preprint. In a race against time, Halmos produced a standard translation of
the Bernstein-Robinson argument, in time for the translation to appear in the same issue
of Pacific Journal of Mathematics, alongside the original. Halmos invested considerable
emotional energy (and sweat , as he memorably puts it in his autobiography23 ) into his
translation. Whether or not he was capable of subsequently maintaining enough of a
detached distance in order to formulate an unbiased evaluation of non-standard analysis,
his blunt unflattering comments appear to retroactively justify his translationist attempt
to deflect the impact of one of the first spectacular applications of Robinson’s theory.

Question 5.4. How would one express the number π in Lightstone’s “.999. . . ;. . . 999”
notation?

Answer. Certainly, as follows:

3.141 . . . ; . . . dH−1dHdH+1 . . .

The digits of a standard real appearing after the semicolon are, to a considerable extent,
determined by the digits before the semicolon. The following interesting fact might
begin to clarify the situation. Let

dmin

be the least digit occurring infinitely many times in the standard decimal expansion of π.
Similarly, let

d∞

min

be the least digit occurring in an infinite place of the extended decimal expansion of π.
Then the following equality holds:

dmin = d∞

min.

This equality indicates that our scant knowledge of the infinite decimal places of π is
not due entirely to the “non-constructive nature of the classical constructions using the
axiom of choice”, as has sometimes been claimed; but rather to our scant knowledge of
the standard decimal expansion: no “naturally arising” irrationals are known to possess
infinitely many occurrences of any specific digit.

22See the answer to Question 7.3 for more details on the ultrapower construction.
23Halmos wrote [27, p. 204]: “The Bernstein-Robinson proof [of the invariant subspace conjecture of

Halmos’] uses non-standard models of higher order predicate languages, and when [Robinson] sent me
his reprint I really had to sweat to pinpoint and translate its mathematical insight.”
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Question 5.5. What does the odd expression “H-infinitely many” mean exactly?

Answer. A typical application of an infinite hyperinteger H is the proof of the extreme
value theorem.24 Here one partitions the interval, say [0, 1], into H-infinitely many
equal subintervals (each subinterval is of course infinitesimally short). Then we find the
maximum xi0 among the H +1 partition points xi by the transfer principle,25 and point
out that by continuity, the standard part of the hyperreal xi0 gives a maximum of the
real function.

Question 5.6. I am still bothered by changing the meaning of the notation .999 . . . as it
can be misleading. I recall I was taught that it is preferable to use the y ′ or yx notation
until one is familiar with derivatives, since dy/dx can be very misleading even though it
can be extremely convenient. Shouldn’t it be avoided?

Answer. There may be a reason for what you were taught, already noted by Bishop
Berkeley26 [8] nearly 300 years ago! Namely, standard analysis has no way of justifying
these manipulations rigorously. The introduction of the notation dy/dx is postponed in
the standard approach, until the students are already comfortable with derivatives, as
the implied ratio is thought of as misleading.

Meanwhile, mathematician and leading mathematics educator D. Tall writes as follows
[63, chapter 11]:

What is far more appropriate for beginning students is an approach build-
ing from experience of dynamic embodiment and the familiar manipula-
tion of symbols in which the idea of dy/dx as the ratio of the components
of the tanget vector is fully meaningful.

Tall writes that, following the adoption of the limit concept by mathematicians as the
basic one,

[s]tudents were given emotionally charged instructions to avoid thinking
of dy/dx as a ratio, because it was now seen as a limit, even though the
formulae of the calculus operated as if the expression were a ratio, and
the limit concept was intrinsically problematic.

With the introduction of infinitesimals such as ∆x, one defines the derivative f ′(x) as

f ′(x) = st(∆y/∆x),

where “st” is the standard part function.27 Then one sets dx = ∆x, and defines dy =
f ′(x)dx. Then f ′(x) is truly the ratio of two infinitesimals: f ′(x) = dy/dx, as envisioned
by the founders of the calculus28 and justified by Robinson.

24See Appendix A, item A.9 for details.
25See Appendix A, item A.1.
26See footnote 8 and main text there.
27See Appendix A, item A.3 and item A.5.
28Schubring [52, p. 170, 173, 187] attributes the first systematic use of infinitesimals as a foundational

concept, to Johann Bernoulli (rather than Newton or Leibniz).
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6. A cardinal issue

Question 6.1. How does one relate hyperreal infinities to cardinality? It still isn’t clear
to me what “H-infinitely many 9s” means. Is it ℵ0, ℵ1, the continuum, or something
else?

Answer. Since there exist countable Skolem non-standard models of arithmetic [54],
the short answer to your question is “ℵ0”. Every non-standard natural number in such a
model will of course have only countably many numbers smaller than itself, and therefore
every extended decimal will have only countably many digits.

Question 6.2. How do you go from Skolem to point, nine recurring?

Answer. Skolem [54] already constructed non-standard models of arithmetic a quarter
century before A. Robinson. Following the work of J. Avigad [3], it is possible to capture
a significant fragment of non-standard calculus, in a very weak logical language; namely,
in the language of primitive recursive arithmetic (PRA), in the context of the fraction

field of Skolem’s non-standard model. Avigad gives an explicit syntactic translation of
the nonstandard theory to the standard theory. In the fraction field of Skolem’s non-
standard model, equality, thought of as a two-place relation, is interpreted as the relation
=∗ of being infinitely close. A “real number” can be thought of as an equivalence class
relative to such a relation, though the actual construction of the quotient space (“the
continuum”) transcends the PRA framework.

The integer part (i.e. floor) function [x] is primitive recursive due to the existence
of the Euclidean algorithm of long division. Thus, we have [m/n] = 0 if m < n, and
similarly [m + n/n] = [m/n] + 1. Furthermore, the digits of a decimal expansion are
easily expressed in terms of the integer part. Hence the digits are primitive recursive
functions. Thus the PRA framework is sufficient for dealing with the issue of point, nine

recurring . Such an approach provides a common extended decimal “kernel” for most
theories containing infinitesimals, not only Robinson’s theory.

Question 6.3. What’s the long answer on cardinalities?

Answer. On a deeper level, one needs to get away from the naive cardinals of Cantor’s
theory,29 and focus instead on the distinction between a language and a model. A
language (more precisely, a theory in a language, such as first order logic) is a collection
of propositions. One then interprets such propositions with respect to a particular model.

A key notion here is that of an internal set.30 Each set S of reals has a natural
extension S∗ over R

∗, but also atomic elements of R
∗ are considered internal, so the

collection of internal sets is somewhat larger than just the natural extensions of real
sets.

A key observation is that, when the language is being applied to the non-standard
extension, the propositions are being interpreted as applying only to internal sets, rather
than to all sets.

29which cannot be used in any obvious way as individual numbers in an extended number system.
30See Appendix A, item A.2.
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In more detail, there is a certain set-theoretic construction31 of the hyperreal the-
ory R

∗, but the language will be interpreted as applying only to internal sets and not
all set-theoretic subsets of R

∗.
Such an interpretation is what makes it possible for the transfer principle to hold,

when applied to a theory in first order language.

Question 6.4. I still have no idea what the extended decimal expansion is.

Answer. In Robinson’s theory, the set of standard natural numbers N is imbedded
inside the collection of hyperreal natural numbers,32 denoted N

∗. The elements of the
difference N

∗ \N are sometimes called (positive) infinite hyperintegers, or non-standard
integers.

The standard decimal expansion is thought of as a string of digits labeled by N.
Similarly, Lightstone’s extended expansion can be thought of as a string labeled by N

∗.
Thus an extended decimal expansion for a hyperreal in the unit interval will appear as

a = .a1a2a3 . . . ; . . . aH−2aH−1aH . . .

The digits before the semicolon are the “standard” ones (i.e. the digits of st(a), see
Appendix A). Given an infinite hyperinteger H, the string containing H-infinitely many
9s will be represented by

.999 . . . ; . . . 999

where the last digit 9 appears in position H. It falls short of 1 by the infinitesimal
amount 1/10H.

Question 6.5. What happens if one decreases .999 . . . ; . . . 999 further, by the same
infinitesimal amount 1/10H ?

Answer. One obtains the hyperreal number

.999 . . . ; . . . 998,

with digit “8” appearing at infinite rank H.

Question 6.6. You mention that the students have not been taught about R and lim
before being introduced to non-terminating decimals. Perhaps the best solution is to
delay the introduction of non-terminating decimals? What point is there in seeking the
“right” approach, if in any case the students will not know what you are talking about?

Answer. How would you propose to implement such a scheme? More specifically, just
how much are we to divulge to the students about the result of the long division33 of 1
by 3?

31See discussion of the ultrapower construction in Section 7
32A non-standard model of arithmetic is in fact sufficient for our purposes; see the answer to Ques-

tion 6.1
33This long division is analyzed in the answer to Question 8.1 below
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Question 6.7. Just between the two of us, in the end, there is still no theoretical
explanation for the strict inequality .999 . . . < 1, is there? You did not disprove the
equality .999 . . . = 1. Are there any schoolchildren that could understand Lightstone’s
notation?

Answer. The point is not to teach Lightstone’s notation to schoolchildren, but to
broaden their horizons by mentioning the existence of arithmetic frameworks where
their “hunch” that .999 . . . falls short of 1, can be justified in a mathematically sound
fashion, consistent with the idea of an “infinite string of 9s” they are already being told
about. The underbrace notation

.999 . . .
︸ ︷︷ ︸

H

= 1 − 1

10H

may be more self-explanatory than Lightstone’s semicolon notation; to emphasize the
infinite nature of the non-standard integer H, one could denote it by the traditional
infinity symbol ∞, so as to obtain a strict inequality34

.999 . . .
︸ ︷︷ ︸

∞

< 1,

keeping in mind that the left-hand side is an infinite terminating extended decimal.

Question 6.8. The multitude of bad teachers will stumble and misrepresent whatever
notation you come up with. For typesetting purposes, Lighthouse’s notation is more
suitable than your underbrace notation. Isn’t an able mathematician committing a
capital sin by promoting a pet viewpoint, as the cure-all solution to the problems of
math education?

Answer. Your assessment is that the situation is bleak, and the teachers are weak.
On the other hand, you seem to be making a hidden assumption that the status-quo
cannot be changed in any way. Without curing all ills of mathematics education, one can
ask what educators think of a specific proposal addressing a specific minor ill, namely
student frustration with the problem of unital evaluation.

One solution would be to dodge the discussion of it altogether. In practice, this is
not what is done, but rather the students are indeed presented with the claim of the
evaluation of .999. . . to 1. This is done before they are taught R or lim. The facts on the
ground are that such teaching is indeed going on, whether in 12th grade (or even earlier,
see [65]) or at the freshman level.

Question 6.9. Are hyperreals conceptually easier than the common reals? Will modern
children interpret sensibly “infinity minus one,” say?

Answer. David Tall, a towering mathematics education figure, has published the
results of an “interview” with a pre-teen, who quite naturally developed a number system
where 1, 2, 3 can be added to “infinity” to obtain other, larger, “infinities”. This
indicates that the idea is not as counterintuitive as it may seem to us, through the lens
of our standard education.

34See answer to Question 8.3 for a more specific choice of H
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Question 6.10. If the great Kronecker could not digest Cantor’s infinities, how are
modern children to interpret them?

Answer. No, schoolchildren should not be taught the arithmetic of the hyperreals,
no more than Cantorian set theory. On the other hand, the study by K. Sullivan [57]
in the Chicago area indicates that students following the non-standard calculus course
were better able to interpret the sense of the mathematical formalism of calculus than
a control group following a standard syllabus. Sullivan’s conclusions were also noted by
Artigue [2], Dauben [22], and Tall [58]. A more recent synthesis of teaching frameworks
based on non-standard calculus was developed by Bernard Hodgson [29] in ’92, and
presented at the ICME-7 at Quebec.

Are these students greater than Kronecker? Certainly not. On the other hand, Kro-
necker’s commitment to the ideology of finitism35 was as powerful as most mathemati-
cians’ commitment to the standard reals is, today.

Mathematics education researcher J. Monaghan, based on field studies, has reached
the following conclusion [43, p. 248]:

[...] do infinite numbers of any form exist for young people without formal
mathematical training in the properties of infinite numbers? The answer
is a qualified ‘yes’.

Question 6.11. Isn’t the more sophisticated reader going to wonder why Lightstone
stated in [38] that decimal representation is unique, while you are making a big fuss over
the nonuniqueness of decimal notation and the strict inequality?

Answer. Lightstone was referring to the convention of replacing each terminating
decimal, by a tail of 9s.

Beyond that, it is hard to get into Lightstone’s head. Necessarily remaining in the
domain of speculation, one could mention the following points. Mathematicians trained
in standard decimal theory tend to react with bewilderment to any discussion of a strict
inequality “.999 . . .” < 1. Now Lightstone was interested in publishing his popular article
on infinitesimals, following his advisor’s (Robinson’s) approach. There is more than one
person involved in publishing an article. Namely, an editor also has a say, and one of
his priorities is defining the level of controversy acceptable in his periodical.

Question 6.12. Why didn’t Lighstone write down the strict inequality?

Answer. Lightstone could have made the point that all but one extended expansions
starting with 999 . . . give a hyperreal value strictly less than 1. Instead, he explicitly re-
produces only the expansion equal to 1. In addition, he explicitly mentions an additional
expansion–and explains why it does not exist! Perhaps he wanted to stay away from the

35As a lightning introduction to Intuitionism, we note that Kronecker rejected actual (completed)
infinity, as did Brouwer, who also rejected the law of excluded middle (which would probably have
been rejected by Kronecker, had it been crystallized as an explicit concept by logicians in Kronecker’s
time). Brouwer developed a theory of the continuum in terms of his “choice sequences”. E. Bishop’s
Constructivism rejects both Kronecker’s finitism (Bishop accepts the actual infinity of N) and Brouwer’s
theory of the continuum, described as “semimystical” by Bishop [11, p. 10].
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strict inequality, and concentrate instead on getting a minimal amount of material on
non-standard analysis published in a mainstream popular periodical. All this is in the
domain of speculation.

As far as the reasons for elaborating a strict non-standard inequality, they are more
specific. First, the manner in which the issue is currently handled by education pro-
fessionals, tends to engender student frustration. Furthermore, the standard treatment
conceals the power of non-standard analysis in this particular issue.

7. Circular reasoning, ultrafilters, and Platonism

Question 7.1. Since the construction of the hyperreal numbers depends on that of
the real numbers, wouldn’t it be extremely easy for people to attack this idea as being
circular reasoning?

Answer. Actually, your assumption is incorrect. Just as the reals can be obtained from
the rationals as the set of equivalence classes of suitable sequences of rational numbers
(namely, the Cauchy ones), so also a version of the hyperreals36 can be obtained from
the rationals as the set of equivalence classes of sequences of rational numbers, modulo
a suitable equivalence relation. Such a construction is due to Luxemburg [39]. The
construction is referred to as the ultrapower construction, see Goldblatt [25].

Question 7.2. Non-standard analysis? You mean ultrafilters and all that?

Answer. The good news is that you don’t need ultrafilters to do non-standard analysis:
the axiom of choice is enough.37

Question 7.3. Good, because, otherwise, aren’t you sweeping a lot under the rug when
you teach non-standard analysis to first year students?

Answer. One sweeps no more under the rug than the equivalence classes of Cauchy
sequences, which are similarly not taught in first year calculus. After all, the hyperreals
are just equivalence classes of more general sequences (this is known as the ultrapower
construction). What one does not sweep under the rug in the hyperreal approach is
the notion of infinitesimal which historically was present at the inception of the theory,
whether by Archimedes or Leibniz-Newton. Infinitesimals were routinely used in teach-
ing until as late as 1912, the year of the last edition of the textbook by L. Kiepert [34].
This issue was discussed in more detail by P. Roquette [49].

36One does not obtain all elements of R
∗ by starting with sequences of rational numbers, but the

resulting non-Archimedean extension of R is sufficient for most purposes of the calculus, cf. Avigad [3].
37The comment is, of course, tongue in cheek, but many people seem not to have realized yet that

the existence of a free (non-principal) ultrafilter is as much of a consequence of the axiom of choice, as
the existence of a maximal ideal (a standard tool in algebra), or the Hahn-Banach theorem (a standard
tool in functional analysis). This is as good a place as any to provide a brief unequal time to an
opposing view [45]: We are all Platonists, aren’t we? In the trenches, I mean—when the chips are

down. Yes, Virginia, there really are circles, triangles, numbers, continuous functions, and all the rest.

Well, maybe not free ultrafilters. Is it important to believe in the existence of free ultrafilters? Surely

that’s not required of a Platonist. I can more easily imagine it as a test of sanity: ‘He believes in free

ultrafilters, but he seems harmless’. Needless to say, the author of [45] is in favor of eliminating the
axiom of choice–including the countable one.
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Question 7.4. I have a serious problem with Lightstone’s notation. I can see it working
for a specific infinite integer H, and even for nearby infinite integers of the form H + n,
where n is a finite integer, positive or negative. However, I do not see how it represents
two different integers, for instance H and H2 on the same picture. For in this case, H2

is greater than H +n for any finite n. Thus it does not lie in the same infinite collection
of decimal places

; . . . 1 . . .

so that one needs even more than a potentially infinite collection of sequences of digits

; . . . ;

to cope with all hyperintegers.

Answer. Skolem [54] already constructed non-standard models for arithmetic, many
years before Robinson.38 Here you have a copy of the standard integers, and also many
“galaxies”. A galaxy, in the context of Robinson’s hyperintegers,39 is a collection of
hyperintegers differing by a finite integer. At any rate, one does need infinitely many
semicolons if one were to dot all the i’s.

Lightstone is careful in his article to discuss this issue. Namely, what is going on to
the right of his semicolon is not similar to the simple picture to the left. At any rate,
the importance of his article is that he points out that there does exist the notion of an
extended decimal representation, where the leftmost galaxy of digits of x are the usual
finite digits of st(x).

8. How long a division?

Question 8.1. Long division of 1 by 3 gives .333 . . . which is a very obvious pattern.
Therefore multiplying back by 3 we get .999 . . . = 1. There is nothing else to discuss!

Answer. Let us be clear about one thing: long division of 1 by 3 does not produce
the infinite decimal .333 . . . contrary to popular belief. What it does produce is the
sequence 〈.3, .33, .333, . . .〉, where the dots indicate the obvious pattern.

Passing from a sequence to an infinite decimal is a major additional step. The existence
of an infinite decimal expansion is a non-trivial matter that involves the construction of
the real number system, and the notion of the limit.

Question 8.2. Doesn’t the standard formula for converting every repeated decimal to
a fraction show that .333 . . . equals 1

3
on the nose?

Answer. Converting decimals to fractions was indeed the approach of [65]. However,
in a pre-R environment, one can argue that the formula only holds up to an infinitesimal
error, and attempts to “prove” unital evaluation by an appeal to such a formula amount
to replacing one article of faith, by another.

To elaborate, note that applying the iterative procedure of long division in the case
of 1

3
, does not by itself produce any infinite decimal, no more than the iterative procedure

38See the answer to Question 6.2 for more details.
39See Goldblatt [25] for more details
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of adding 1 to the outcome of the previous step, produces any infinite integer. Rather,
the long division produces the sequence 〈.3, .33, .333, . . .〉. Transforming the sequence
into an infinite decimal has nothing to do with long division, and requires, rather, an
application of the limit concept, in the context of a complete number system.

Note that, if we consider the sequence

〈.9, .99, .999, . . .〉,
but instead of taking the limit, take its equivalence class

[.9, .99, .999, . . .]

in the ultrapower construction of the hyperreals (see [39, 25]), then we obtain a value
equal to 1 − 1/10[N] where 〈N〉 is the “natural string” sequence enumerating all the
natural numbers, whereas [N] is its equivalence class in the hyperreals. Thus the unital
evaluation has a viable competitor, namely, the “natural string” evaluation.

Question 8.3. Isn’t it odd that you seem to get a canonical representative for “.999 . . .”
which falls short of 1?

Answer. The hyperinteger defined by the equivalence class of the sequence 〈N〉 =
〈1, 2, 3, . . .〉 only makes sense in the context of the ultrapower construction, and depends
on the choices made in the construction. The standard real decimal (.999 . . .)Lim is
defined as the limit of the sequence (.9, .99, .999 . . .), and the hyperreal (.999 . . .)Lux is
defined as the class of the same sequence in the ultrapower construction. Then

(.999 . . .)Lim = 1 (8.1)

is the unital evaluation, interpreting the symbol .999 . . . as a real number, while

.999 . . .
︸ ︷︷ ︸

[N]

= 1 − 1

10[N]
. (8.2)

is the natural string evaluation.
In more detail, in the ultrapower construction of R

∗, the hyperreal [.9, .99, .999, . . .],
represented by the sequence 〈.9, .99, .999, . . .〉, is an infinite terminating string of 9s, with
the last nonzero digit occurring at a suitable infinite hyperinteger rank. The latter is
represented by the string listing all the natural numbers 〈1, 2, 3, . . .〉, which we abbreviate
by the symbol 〈N〉. Then the equivalence class [N] is the corresponding “natural string”
hyperinteger. We therefore obtain a hyperreal equal to 1 − 1

10[N] .
The unital evaluation of the symbol .999 . . . has a viable competitor, namely the

natural string evaluation of this symbol.

Question 8.4. What do you mean by 10N? It looks to me like a typical sophomoric
error.

Answer. The natural string evaluation yields a hyperreal with Lightstone [38] repre-
sentation given by .999 . . . ; . . . 9, with the last digit occurring at non-standard rank [N].
Note that it would be incorrect to write

(.999 . . .)Lux = 1 − 1

10N
(8.3)
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since the expression 10N is meaningless, N not being a number in any number system.
Meanwhile, the sequence 〈N〉 listing all the natural numbers in increasing order, repre-
sents an equivalence class [N] in the ultrapower construction of the hyperreals, so that
[N] is indeed a quantity, more precisely a non-standard integer, or a hypernatural number
[25].

Question 8.5. Do the subscripts in (.999 . . .)Lim and (.999 . . .)Lux stand for “limited”
and “deluxe”?

Answer. No, the subscript “Lim” refers to the unital evaluation obtained by applying
the limit to the sequence, whereas the subscript “Lux” refers to the natural string
evaluation, in the context of Luxemburg’s sequential construction of the hyperreals (the
ultrapower construction).

Question 8.6. The absence of infinitesimals is certainly not some kind of a shortcoming
of the real number system that one would need to apologize for. How can you imply
otherwise?

Answer. The standard reals are at the foundation of the magnificent edifice of classical
and modern analysis. Ever since their rigorous conception by Weierstrass, Dedekind,
and Cantor, the standard reals have faithfully served the needs of generations of mathe-
maticians of many different specialties. Yet the non-availability of infinitesimals has the
following consequences:

(1) it distances mathematics from its applications in physics, enginering, and other
fields (where nonrigorous infinitesimals are in routine use);

(2) it complicates the logical structure of calculus concepts (such as the limit) beyond
the comprehension of a significant minority (if not a majority) of undergraduate
students;

(3) it deprives us of a key tool in interpreting the work of such greats as Archimedes,
Euler, and Cauchy.

In this sense, the absence of infinitesimals is a shortcoming of the standard number
system.

Appendix A. A non-standard glossary

The present section can be retained or deleted at the discretion of the referee. In this
section we present some illustrative terms and facts from non-standard calculus [33].
The relation of being infinitely close is denoted by the symbol ≈. Thus, x ≈ y if and
only if x − y is infinitesimal.

A.1. Natural hyperreal extension f ∗. The extension principle of non-standard cal-
culus states that every real function f has a hyperreal extension, denoted f ∗ and called
the natural extension of f . The transfer principle of non-standard calculus asserts that
every real statement true for f , is true also for f ∗ (for statements involving any rela-
tions). For example, if f(x) > 0 for every real x in its domain I, then f ∗(x) > 0 for
every hyperreal x in its domain I∗. Note that if the interval I is unbounded, then I∗
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necessarily contains infinite hyperreals. We will sometimes drop the star ∗ so as not to
overburden the notation.

A.2. Internal set. Internal set is the key tool in formulating the transfer principle,
which concerns the logical relation between the properties of the real numbers R, and
the properties of a larger field denoted

R
∗

called the hyperreal line. The field R
∗ includes, in particular, infinitesimal (“infinitely

small”) numbers, providing a rigorous mathematical realisation of a project initiated by
Leibniz. Roughly speaking, the idea is to express analysis over R in a suitable language
of mathematical logic, and then point out that this language applies equally well to R

∗.
This turns out to be possible because at the set-theoretic level, the propositions in such
a language are interpreted to apply only to internal sets rather than to all sets. Note
that the term “language” is used in a loose sense in the above. A more precise term is
theory in first-order logic. Internal sets include natural extension of standard sets.

A.3. Standard part function. The standard part function “st” is the key ingredient
in A. Robinson’s resolution of the paradox of Leibniz’s definition of the derivative as the
ratio of two infinitesimals

dy

dx
.

The standard part function associates to a finite hyperreal number x, the standard
real x0 infinitely close to it, so that we can write

st(x) = x0.

In other words, “st” strips away the infinitesimal part to produce the standard real in the
cluster. The standard part function “st” is not defined by an internal set (see item A.2
above) in Robinson’s theory.

A.4. Cluster. Each standard real is accompanied by a cluster of hyperreals infinitely
close to it. The standard part function collapses the entire cluster back to the stan-
dard real contained in it. The cluster of the real number 0 consists precisely of all the
infinitesimals. Every infinite hyperreal decomposes as a triple sum

H + r + ε,

where H is a hyperinteger, r is a real number in [0, 1), and ε is infinitesimal. Varying ε
over all infinitesimals, one obtains the cluster of H + r.

A.5. Derivative. To define the real derivative of a real function f in this approach, one
no longer needs an infinite limiting process as in standard calculus. Instead, one sets

f ′(x) = st

(
f(x + ε) − f(x)

ε

)

, (A.1)

where ε is infinitesimal, yielding the standard real number in the cluster of the hyperreal
argument of “st” (the derivative exists if and only if the value (A.1) is independent of the
choice of the infinitesimal). The addition of “st” to the formula resolves the centuries-old
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paradox famously criticized by George Berkeley40 [8] (in terms of the Ghosts of departed

quantities, cf. [55, Chapter 6]), and provides a rigorous basis for infinitesimal calculus
as envisioned by Leibniz.

A.6. Continuity. A function f is continuous at x if the following condition is satis-
fied: y ≈ x implies f(y) ≈ f(x).

A.7. Uniform continuity. A function f is uniformly continuous on I if the following
condition is satisfied:

• standard: for every ε > 0 there exists a δ > 0 such that for all x ∈ I and for
all y ∈ I, if |x − y| < δ then |f(x) − f(y)| < ε.

• non-standard: for all x ∈ I∗, if x ≈ y then f(x) ≈ f(y).

A.8. Hyperinteger. A hyperreal number H equal to its own integer part

H = [H]

is called a hyperinteger (here the integer part function is the natural extension of the
real one). The elements of the complement Z

∗ \ Z are called infinite hyperintegers, or
non-standard integers.

A.9. Proof of extreme value theorem. Let H be an infinite hyperinteger. The inter-
val [0, 1] has a natural hyperreal extension. Consider its partition into H subintervals of
equal length 1

H
, with partition points xi = i/H as i runs from 0 to H. Note that in the

standard setting, with n in place of H, a point with the maximal value of f can always
be chosen among the n + 1 partition points xi, by induction. Hence, by the transfer
principle, there is a hyperinteger i0 such that 0 ≤ i0 ≤ H and

f(xi0) ≥ f(xi) ∀i = 0, . . . , H. (A.2)

Consider the real point

c = st(xi0).

An arbitrary real point x lies in a suitable sub-interval of the partition, namely x ∈
[xi−1, xi], so that st(xi) = x. Applying “st” to the inequality (A.2), we obtain by
continuity of f that f(c) ≥ f(x), for all real x, proving c to be a maximum of f (see [33,
p. 164]).

A.10. Limit. We have limx→a f(x) = L if and only if whenever the difference x− a 6= 0
is infinitesimal, the difference f(x)−L is infinitesimal, as well, or in formulas: if st(x) = a
then st(f(x)) = L.

Given a sequence of real numbers {xn|n ∈ N}, if L ∈ R we say L is the limit of the
sequence and write L = limn→∞ xn if the following condition is satisfied:

st(xH) = L for all infinite H (A.3)

40See footnote 8 for a historical clarification
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(here the extension principle is used to define xn for every infinite value of the index).
This definition has no quantifier alternations. The standard (ε, δ)-definition of limit, on
the other hand, does have quantifier alternations:

L = lim
n→∞

xn ⇐⇒ ∀ε > 0 , ∃N ∈ N , ∀n ∈ N : n > N =⇒ d(xn, L) < ε. (A.4)

A.11. Non-terminating decimals. Given a real decimal

u = .d1d2d3 . . . ,

consider the sequence u1 = .d1, u2 = .d1d2, u3 = .d1d2d3, etc. Then by definition,

u = lim
n→∞

un.

Meanwhile, limn→∞ un = st(u
H

) for every infinite H. Now if u is a non-terminating
decimal, then one obtains a strict inequality u

H
< u by transfer from un < u. In

particular,

.999 . . . ; . . . 9̂ = .999 . . .
︸ ︷︷ ︸

H

= 1 − 1
10H < 1, (A.5)

where the hat ˆ indicates the H-th Lightstone decimal place. The standard interpre-
tation of the symbol .999 . . . as 1 is necessitated by notational uniformity: the sym-
bol .a1a2a3 . . . in every case corresponds to the limit of the sequence of terminating
decimals .a1 . . . an. Alternatively, the ellipsis in .999 . . . could be interpreted as alluding
to an infinity of nonzero digits specified by a choice of an infinite hyperinteger H ∈ N

∗\N.
The resulting H-infinite extended decimal string of 9s corresponds to an infinitesimally
diminished hyperreal value (A.5). Such an interpretation is perhaps more in line with
the naive initial intuition persistently reported by teachers.

A.12. Integral. The definite integral of f is the standard part of an infinite Riemann
sum

∑
H

i=0 f(x)∆x, the latter being defined by means of the transfer principle, once finite
Riemann sums are in place, see [33] for details.
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