THE NUMERICAL PHENOMENA REGARDING RH

Artem Afanasiev To support the channel: PayPal: @afster321

THE MAIN IDEA

- The idea is to use the Residue theorem to discover the location of singularities for $\frac{1}{\eta(s)}$, where $\eta(s) = (1 - 2^{1-s})\zeta(s) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^s}$
- This series is convergent on the critical strip!

ISOMORPHISM

- $\varphi(s) = \frac{\ln(s)}{i666\pi} + 0.75$
- Logarithm maps the unit disk to the strip $\{Re(s) < 0, Im(s) \in (-\pi, \pi)\}$
- We scale this strip by $\frac{1}{666\pi}$ and rotate it 90 degrees clockwise by multiplying by -i
- We move this thin vertical strip to the point 0.75

IF THE RIEMANN HYPOTHESIS IS TRUE

- Then $\eta(\varphi(s))$ has got no zeroes on the unit disc except, possibly, 0, which is mapped to infinity
- $\frac{1}{\eta(\varphi(s))}$ has got no singularities on the unit disc except, possibly, 0, which is mapped to infinity
- Then by the Residue theorem:

•
$$\int_{|z|=1} \frac{1}{\eta(\varphi(z))} dz = \int_{|z|=r} \frac{1}{\eta(\varphi(z))} dz$$
, $0 < r < 1$

PARAMETERIZATION OF INTEGRALS

•
$$\int_{|z|=r} \frac{1}{\eta(\varphi(z))} dz = \left| z = re^{it} \right| = \int_{-\pi}^{\pi} \frac{ire^{it}dt}{\eta(\varphi(re^{it}))}$$

• We expect:
$$\int_{-\pi}^{\pi} \frac{ie^{it}dt}{\eta(\varphi(e^{it}))} - \int_{-\pi}^{\pi} \frac{ire^{it}dt}{\eta(\varphi(re^{it}))} = 0$$

• Let us check it numerically!

THE CODE REALIZATION 1

🔄 Numerical counter-example [C:\Users\AF\Desktop\Numerical counter-example]\counter-example.py [Numerical counter-example] - PyCharm	- 🗗 🗙
Eile Edit View Navigate Sode Befactor Run Iools VCS Window Help	
Numerical counter-example) 🐇 counter-example.py	🥷 counter-example 👻 🕻 🇯 📕 🔍
ថ្ម 👸 direct search.py 🕺 🚦 counter-example.py	
g Import numpy as np	- Sra
H a offom scipy.integrate import quad	a de la compañía de l
	R P2
def eta(s, l):	dčka:
<pre>return sum((-1) ** k / k ** s for k in range(1, 1*1000))</pre>	
	+
10 (det 1000 rphim (3): 11 $(666 + np. pl) + 0.75$	=
10	
14 [def integrand1(<u>t1</u> , <u>t2</u> , <u>r</u> , <u>t</u> , <u>1</u>):	
$11 \qquad s = r * np.exp(1) * (r * (r2 - r1) + r1))$	
$e_{a,pni} = 1 / e_{a,a}(a \text{somorphism}(s), 1)$	
10 def <u>loopintegralcheck(rl), r2</u> , t1, t2, 1):	
s_1 , $e_1 = q_{100} q_{100} s_1$ (integrand) (1, 12, 12, 1, 1, 1) and $-$ integrand (1, 12, 11, 1) (nd), (1, 12, 12, 1) (nd)	
if abs(s1 + 1) * s2) >= 0.001:	
return True, sl + 1j * s2	
except ZeroDivisionError:	
	-
	Активация Windows
<pre>/ Initial values</pre>	Чтобы астивировать Windows перейлите в
• while I <= 200	
▶, ≙:Run Ⅲ ≦:TODO 🗷 Terminal 🗣 Python Console	🚺 Event Log
No R interpreter defined: Many R related features like completion, code checking and help won't be available. You can set an interpreter under Preferences->La (yesterda	y 0:44) 388:16 CRLF = UTF-8 = 4 spaces = Python 3.7 (practise1) = 🦕 🚆
	∧ 🐜 d∥ ENG 0:36 🗔
	11.02.2024

THE CODE REALIZATION 2

N N		counter-example [C-\Users\AF\Desktop\Numerical counter-example]\counter-example.py [Numerical counter-example] - PyCharm	- 0)	é.
Eile	<u>E</u> dit ⊻i	ew Navigate Code Befactor Ryn Iools VCS Window Help		
100	lumerica	l counter-example)	📄 counter-example 🔻 😭 📕	a
	direct	search my a counter-recomple my		70
		Anterior Constanting		Gra
				phic
1				1
				2
		r2 = 1		back
		ti = -mp.pi		aĝe
		$ta' = np \cdot pr$		
4				e i
3				
3		<pre>if loopintegralcheck(r1, r2, t1, t2, 1) [0]:</pre>		
1		print("We've found the desired lower bound!, rl=", rl)		
		<pre>print('ine value or the integral:', loopintegralcneck(ri, r2, ti, tz, l)[i]) T1 = isonorphium(r1) imag</pre>		
		T2 = isomorphism(24 + 1) imag		
		print("The upper bound for the imaginary part =", T1)	1	
4		print ("The lower bound for the imaginary part =", T2)		
5				
Ŧ				
F		print(r1)		
8			1	î l
uctu				
Str				
1				
- T				
10 E				
1001			-	
1a			Активация Windows	
*			Чтобы активировать Windows, перейлите в	
		isomorphism()		
	4: Run	Ⅲ §:TODO 🖸 Terminal 🗳 Pythan Console	() Event Log	
	Va R inter	preter defined: Many R related features like completion, code checking and help won't be available. You can set an interpreter under Preferences->Lan (yesterc	day 0:44) 11:50 CRLF = UTF-8 = 4 spaces = Python 3.7 (practise1) = 🍗	₫.
			∧ 🥶 ⊄)) ENG 0:36	
(Carton			11.02.2024	

N	imerical	counter-example [C-\Users\AF\Desktop\Numerical counter-example]\counter-example.py [Numerical counter-example] - PyCharm		ø		
Eile	Edit ⊻ie	zw <u>N</u> avigate <u>C</u> ode <u>R</u> efactor R <u>u</u> n Iools VC <u>S</u> <u>W</u> indow <u>H</u> elp				
	umerica	l counter-example 🛛 🐇 counter-example.py	counter-example 💌	ď ≇		a
u (direct_	search.py 🐇 📸 counter-example.py 👘				
Proje	and a			2		Grap
na C 📮 🖬 🧳		C:\User\AF\Anaconda3\python.exe "C:\Users\AF\Desktop\Numerical counter-example/counter-example.py" Step number: 1 0.25 0.25 0.26 0.26 0.26 0.625 We've found the desired lower bound!, r1= 0.0625 The value of the integral: (-0.001033807478898000842.1316651777070206e-08j) The lower bound for the imaginary part = 0.00132513873965565 The lower bound for the imaginary part = 0.0009938540547416738 Step number: 2 0.25 0.225 0.225 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001096928540521964+1.0905517278114729e-07j) The upper bound for the imaginary part = 0.0009938540547416738 The value of the integral: (-0.001096928540547416738 The value of the integral: (-0.001096928540547416738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 3 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001025423102544667+1.516250619344478e-07j) The upper bound for the imaginary part = 0.000938540547416738 The lower bound for the imaginary part = 0.0009625693698277826 Step number: 4 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.00103937586524257826+1.774606633050874e-07j) The upper bound for the imaginary part = 0.0009665693698277826 Step number: 4 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.00103937586524257826+1.774606633050874e-07j) The upper bound for the imaginary part = 0.000966569366746-07j) The value of the integral: (-0.0010393758652425786+1.774606633050874e-07j) The upper bound for the imaginary part = 0.000966556936746-07j) The value of the integral: (-0.0010939758652425786+1.77460665305057		÷		aphics R Packages
2: Favo		The lower bound for the imaginary part = 0.0006625693698277826 Step number: 5	Активация Windows			
*		0.25				
- 0	4: Run	语 🖗 TODO 🛛 Terminal 🚭 Pythan Console	раздел Параметры.	1 Ever	t Log	
	lo R inter	preter defined: Many R related features like completion, code checking and help won't be available. You can set an interpreter under Preferences->La (vesterday 0:44)	388:16 CRLF = UTF-8 = 4 spaces = Python 3.7 (pr		<u>_</u>	₫,
H			ヘ 📾 di) ENG ₁	0:36 1.02.2024	\Box	

📧 Numerical counter-example [C:\Users\AF\Desktop\Numerical counter-example]\counter-example.py [Numerical counter-example] - PyCharm		- 01				
<u>Eile Edit View Navigate Code Befactor Run Iools VCS Window Help</u>						
Numerical counter-example / 🚜 counter-example.py	📄 counter-example 🔻	₫ ₫	a Q			
ថ្ក 👘 direct_search.py 👘 counter-example.py						
<pre> funct_tearch.py founter-example: The lower bound for the imaginary part = 0.000662569369627/826 Step number: 52 0.28 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: (-0.001083403534784764442.994911644238485e-07)) The lower bound for the imaginary part = 0.0006625693698277826 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: (-0.0010835205821789642.999197333819481e-07)) The value of the integral: (-0.0010835205821789642.999197333819481e-07)) The value of the integral: (-0.0010835205821789642.7826 Step number: 53 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: (-0.0010835265821789642.999197333819481e-07)) The lower bound for the imaginary part = 0.0006625693698277826 Step number: 54 0.23 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: (-0.0010835664244549543.003359709818909e-07)) The upper bound for the imaginary part = 0.0006625693698277826 Step number: 54 0.25 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: re 0.0006625693698277826 Step number: 54 0.25 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: re 0.0006625693698277826 Step number: 55 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: re 0.0006625693698277826 Step number: 55 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: re 0.0006774797556542430547416738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 55 0.125 We've found the desired lower bound!, rl= 0.125 The value of the integral: (-0.00108377747</pre>		•	R Graphics R Pachages			
The value of the integral: (-0.0010837774757356542+3.0074044399253097e-07j) The upper bound for the imaginary part = 0.0009938540547416738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 56 0.25 A	ктивация Windows					
0-125 YT	обы активировать Windows, пер					
P. ≰ Run Ⅲ & TODO 🔯 Terminal 🍨 Python Console		Even	t Log			
No R interpreter defined: Many R related features like completion, code checking and help won't be available. You can set an interpreter under Preferences->Lan (yesterday 0:44) 391:1 G	RLF = UTF-8 = 4 spaces = Python 3.7 (practise1) =	° 🖻			
	^ 🕮 di) ENG	0:37 11.02.2024	Q			

S Numerical	counter-example_IC\Users\AF\Desktop\Numerical counter-example]\counter-example.py [Numerical counter-example] - PyCharm	- a x			
Elle Edit View Navigate Code Refactor Run Iools VCS Window Help					
🖿 Numerical counter-example 🛛 🐇 counter-example.py			a		
ਚ 🐔 direct	search ny 😤 counter-example ny				
roje			Gra		
and⊥∎ * *	<pre>counter-example The upper bound for the imaginary part = 0.0009938540547418738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 77 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001085755275967239843.0747697687960596e-07]) The upper bound for the imaginary part = 0.000938540547416738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 78 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001085022812699397843.077111940807953e-07]) The upper bound for the imaginary part = 0.000938540547416738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 78 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.0010858293203393543.0794078387241797e-07]) The upper bound for the imaginary part = 0.000938540547416738 The lower bound for the imaginary part = 0.000938540547416738 The value of the integral: (-0.00108588993203934543.0794078387241797e-07]) The upper bound for the imaginary part = 0.000938540547416738 The lower bound for the imaginary part = 0.000938540547416738 The lower bound for the imaginary part = 0.000938540547416738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 78 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001085889932039345+3.0794078387241797e-07]) The upper bound for the imaginary part = 0.0006625693698277826 Step number: 80 0.125 We've found for the imaginary part = 0.0006625693698277826 Step number: 80 0.125</pre>	\$	raphics R Packages		
🖈 <u>2</u> . Favorites	The value of the integral: (-0.0010859536818069813+3.0816589680071615e-07j) The upper bound for the imaginary part = 0.0009938540547416738 The lower bound for the imaginary part = 0.0006625693698277826 Step number: 81 0.25	Активация Windows Чтобы активировать Windows, перейдите в раздел "Параметры".			
A: Run	ﷺ §:TODO 🖬 Terminal 🗣 Python Conscie	🙋 Event Log			
DE and P	lugin Updates: PyCharm is ready to update. (today 0.42)	565:1 CRLF = UTF-8 = 4 spaces = Python 3.7 (practise1) = 1			
		^ 🐏 ⊄) ENG 1:58 💭			

R N	Numerical counter-example [C:\Users\AF\Desktop\Numerical counter-example	e]\counter-example.py [Numerical counter-example] - PyCharm	- a ×
Eile	ile Edit View Navigate Code Befactor Run Iools VCS Window He	elp	
	Numerical counter-example) 🐇 counter-example.py		💽 counter-example 🔻 🕨 🎽 🔲 🔍
	5 🐔 direct_search.py 🛛 📇 counter-example.py		
Proje			
¥ 2 Favorites 🐮 2. Structure	<pre>Run: Counter-example Ine upper bound for the imaginary part = 0.0009938 The lower bound for the imaginary part = 0.0009625 Step number: 197 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.0010894403479305417 The upper bound for the imaginary part = 0.0006625 Step number: 198 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001089446663189368 The lower bound for the imaginary part = 0.0006625 Step number: 198 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001089446663189368 The lower bound for the imaginary part = 0.0006625 Step number: 199 0.25 0.125 We've found the desired lower bound!, r1= 0.125 The value of the integral: (-0.001089468650203643 The upper bound for the imaginary part = 0.0009938 The lower bound for the imaginary part = 0.0009938 The lower bound for the imaginary part = 0.0009938 The value of the integral: (-0.001089468650203643 The upper bound for the imaginary part = 0.0009938 The lower bound for the imaginary part = 0.0009938 The value of the integral: (-0.0010894829456237227 The value of the integral: (-0.001089482945623727 The value of the integral: (-0.001089482945623727 The</pre>	2540547416738 5693698277826 7+3.2077941958252865e-07j) 2540547416738 5693698277826 8+3.208336462057204e-07j) 2540547418738 5693698277826 3.208874459481592e-07j) 2540547416738 5693698277826 7+3.209408206972242e-07j) 2540547416738 5693698277826	Активация Windows Чтобы активировать Windows, перейдите в
Ē	▶ 🛓 Run 🖽 <u>6</u> :TODO 🔯 Terminal 🗬 Python Console		раздел "Нараметры". 🙆 Event Log
	IDE and Plugin Updates: PyCharm is ready to update. (today 0.42)		1405:1 CRLF = UTF-8 = 4 spaces = Python 3.7 (practise1) = 🍗 👮
H	= o 📄 🧿 📴 💁		∧ ■ (1)) ENG 16:05 🖓

THE ATTEMPTS TO PROVE RH. JEFF N. COOK 1

Lemma 1

Given the Riemann oscillator

$$\zeta_s(t) = \frac{d^2c_s}{dt^2} + 2\upsilon(s)\omega_s\frac{dc_s}{dt} + \omega_s^2c_s, \quad s \neq 1,$$

where $c_s(t)$, ω_s , and v(s) are defined as follows:

$$c_s(t) = \frac{e^{(s-1)t}}{(s-1)^3}, \quad s \neq 1,$$
$$\omega_s = i\overline{s},$$

$$v(s) = \frac{i(2\overline{s}^2 + (s-1)^3)}{4(s-1)\overline{s}} - \frac{(s-1)^2}{2\overline{s}} \int_0^\infty \frac{(1-it)^s - (1+it)^s}{(t^2+1)^s (e^{2\pi t} - 1)} dt, \quad s \neq 1$$

THE ATTEMPTS TO PROVE RH. JEFF N. COOK 2

$$\zeta_s(t) := \frac{d^2 c_s}{dt^2} + 2\upsilon(s)\omega_s \frac{dc_s}{dt} + \omega_s^2 c_s, \quad s \neq 1.$$
(17)

Given the form of the Riemann oscillator, it is possible to think of v(s) as playing a role analogous to the damping ratio in a harmonic oscillator, as it determines the behavior of the Riemann oscillator. However, it is important to note that the Riemann oscillator is a purely mathematical model and does not have a physical interpretation. As such, it is not a direct analogy, but rather a mathematical concept that can be used to study the properties of the Riemann zeta function. Likewise, it is possible to think of $\alpha(s)$ playing a role analogous to the decay rate, [4] and ω_s can be thought of as a frequency parameter. In a harmonic oscillator, the frequency is a real number that describes the number of oscillations per unit time. In the Riemann oscillator, the frequency is a complex number, which means that the oscillator is not oscillating in a simple sinusoidal pattern. Instead, the oscillator is behaving in a more complicated way that depends on both the real and imaginary parts of ω_s .

Now that the Riemann oscillator has been defined independently of the Riemann zeta function in a way that eliminates any assumptions in the definition, one can prove Lemma 1. Evaluate the Riemann oscillator at t = 0. At t = 0, equation (17) reduces to

$$\zeta_s(0) = \frac{1}{s-1} - \frac{2i\overline{s}\upsilon(s)}{(s-1)^2} - \frac{(\overline{s})^2}{(s-1)^3}.$$
(18)

Considering the explicit form of u(s) in (14) the Diemonn oscillator reduces to

THE ATTEMPTS TO PROVE RH. ARIC B. CANNANIE 1

Riemann's Last Theorem $\Re(s) \neq \frac{1}{2} \Leftrightarrow \zeta(s) \neq 0 \quad 0 < \Re(s) < 1$ $\zeta(s) = \sum_{n=1}^{b} \left(\frac{1}{n^{s}}\right) - \frac{b^{1-s}}{1-s} - s \int_{b}^{\infty} \frac{x - [x]}{x^{s+1}} dx , b \in \mathbb{N}$ $\zeta(1-s) = \sum_{n=1}^{b} \left(\frac{1}{n^{1-s}}\right) - \frac{b^{s}}{s} - (1-s) \int_{b}^{\infty} \frac{x - [x]}{x^{2-s}} dx , b \in \mathbb{N}$ $\sum_{n=1}^{b} \left(\frac{1}{n^{s-s}}\right) - s \int_{b}^{\infty} \frac{x - [x]}{x^{s+1}} dx = \frac{b^{1-s}}{1-s} - \frac{b^{s}}{s} - (1-s) \int_{b}^{\infty} \frac{x - [x]}{x^{2-s}} dx$ $\bigotimes \sum_{n=1}^{b} \left(\frac{1}{n^{s}}\right) - \sum_{n=1}^{\infty} \left(\frac{1}{n^{1-s}}\right) - 0 = \lim_{b \to \infty} \left(\frac{b^{1-s}}{1-s} - \frac{b^{s}}{s}\right) - 0$

THE ATTEMPTS TO PROVE RH. ARIC B. CANNANIE 2

- The key statement is so-called "Super Symmetric Equation":
- $\zeta(s) \zeta(1 \bar{s}) = 0 \Leftrightarrow \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{n=1}^{\infty} \frac{1}{n^{1-\bar{s}}} = 0, Re(s) \in (0, 1)$

THE ATTEMPTS TO PROVE RH. ARIC B. CANNANIE 3

- Why it could make sense?
- Define $F(u, w, z) \coloneqq \sum_{n=1}^{\infty} \frac{1}{n^{u+w}} \sum_{n=1}^{\infty} \frac{1}{n^{u+z}}$
- It coincides with $\zeta(u+w) \zeta(u+z)$ on the domain $Re \ u > 2$, $Re \ w \in (0,1)$, $Re \ z \in (0,1)$, which is an open set.
- Thus, $\zeta(u+w) \zeta(u+z)$ is a.c. of F
- Substitute $u = 0, w = s, z = 1 \overline{s}$

BUT IT HAS NOTHING TO DO WITH PASSING TO THE LIMIT! 1

Lemma 4. Let s be a non-trivial zero of Riemann zeta-function. Then SSE $\implies \Re(s) = \frac{1}{3}$.

By the Lemma 1 we obtain the following.

$$\zeta(s) = \sum_{n=1}^{8k^3} \frac{1}{n^s} - \frac{(8k^3)^{1-s}}{1-s} + o(1), \tag{2}$$

$$\zeta(1-\bar{s}) = \sum_{n=1}^{8k^{\circ}} \frac{1}{n^{(1-\bar{s})}} - \frac{(8k^{\circ})^{\bar{s}}}{\bar{s}} + o(1).$$
(3)

We note that $\{8k^3 | k \ge 1\}$ and $\{8k^6 | k \ge 1\}$ are the subsequences of the sequence of positive integers such that $\lim_{k\to\infty} 8k^3 = \infty \wedge \lim_{k\to\infty} 8k^6 = \infty$. Therefore, we are able to use Lemma 2 and obtain

$$\lim_{k \to \infty} \sum_{n=1}^{8k^3} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \wedge \lim_{k \to \infty} \sum_{n=1}^{8k^6} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \implies \lim_{k \to \infty} \sum_{n=1}^{8k^3} \frac{1}{n^s} = \lim_{k \to \infty} \sum_{n=1}^{8k^6} \frac{1}{n^s} = \lim_{k \to \infty} \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

2

BUT IT HAS NOTHING TO DO WITH PASSING TO THE LIMIT! 2

Subtract (3) from (2) and obtain the following with respect to Lemma 2 after taking the limit as $k \to \infty$.

$$\zeta(s) - \zeta(1 - \bar{s}) = \sum_{n=1}^{\infty} \frac{1}{n^s} - \sum_{n=1}^{\infty} \frac{1}{n^{(1-\bar{s})}} + \lim_{k \to \infty} \left(\frac{(8k^6)^{\bar{s}}}{\bar{s}} - \frac{(8k^3)^{1-s}}{1-s}\right).$$
(4)

If s is a non-trivial zero of Riemann zeta-function, we obtain the following with respect to SSE from (4).

$$\lim_{k \to \infty} \left(\frac{8^{\tilde{s}} k^{6\tilde{s}}}{\tilde{s}} - \frac{8^{1-s} k^{3(1-s)}}{1-s} \right) = 0.$$
 (5)

Now we use the trick, which is given while deriving (15) in https://www.Obq. com/arslt. For the limit of this difference to be equal to zero one should have the same order of those terms, i.e., the real part of the degrees of k should be the same as $\forall z \in \mathbb{C} |e^z| = e^{\Re(z)}$ as otherwise one of the terms blows up. Therefore, we obtain

$$6\Re(s) = 3(1 - \Re(s)) \iff 2\Re(s) = 1 - \Re(s) \iff \Re(s) = \frac{1}{3}$$

Thus, the proof is complete. Now for convenience we check the identity (5) for $s = \frac{1}{2}$. We obtain

$$\lim_{k \to \infty} \left(\frac{8^{\frac{1}{3}} k^{6\frac{1}{3}}}{\frac{1}{3}} - \frac{8^{1-\frac{1}{3}} k^{3(1-\frac{1}{3})}}{1-\frac{1}{3}} \right) = \lim_{k \to \infty} (6k^2 - 6k^2) = 0.$$

Now we shall show that the only possibility for SSE to be correct is the complete absence of non-trivial zeroes of Riemann zeta-function.

WHY THE DIFFERENCE OF SERIES DIVERGE EVEN FOR RE(S)=0.5

WOLFRAM CHECKING

19:03 🛡 🖪 🛦 🐵 🔸		4G+ 🖌 🔒				
	+ @) :				
61 01010 2 10		-				
Step-by-Step Solu Get a step ahead with	tions with Pi your homewo	ro ^{ork}				
FROM THE MAKERS OF WOLFRAM LANGUAGE AND M WolframAlph	FROM THE MARKERS OF WOLFRAM LANGUAGE AND MATHEMATICA					
6^5}{\sqrt{n^2+666^5 n}(\sqrt{n}+\sqrt	{n+666^5}	0 8				
The second seco		<u>t</u> >4				
Input Interpretation						
$\sum_{n=1}^{666^5} \frac{1}{\sqrt{n}} - \sum_{n=1}^{\infty} \frac{666^5}{\sqrt{n^2 + 666^5 n}} \left(\sqrt{n} + \sqrt{n + 666^5 n}\right)^{-1} $	6665)	\$				
Result						
-1.63913×10^{-7}		\$				
🛓 Download Page						
S POWERED BY THE WOLFRAM LANGUAGE						
Related Queries:						
plot 1/sqrt(n)						
(integrate 1/sqrt(n) from n = 1 to xi) / (sum 1/sqrt(1) from n = 1 t	o xi) =				
oil painting effect image Ernst E. Kummer		=				
integrate 1/sqrt(n)		=				
• •						

HE MEANS IT!

WHAT DID I ACHIEVE?

riemanns.last.theorem... 28. 1. komu: já ~

Přeložit do: čeština

You're acting irrationally! You're exhibiting the most shameless behavior I've ever witnessed. People are mocking me for engaging with you. It's embarrassing to even converse with you! As I've said before, and I can repeat it a hundred times more, you're an intellectually devoid parrot.

 \odot

:

×

THANKS FOR WATCHING!

- And remember:
- The best is yet to come!