
THE COUNTER-EXAMPLE TO SUPER

SYMMETRY EQUATION

Artem Afanasiev

April 2023

Abstract

Dear Aric, after a poorly slept night I have come up with idea of
constructing counter-example to your statement. Moreover, I shall avoid
the moments of which we argued since we have not come to understanding.
Hope this will satisfy you. I decided not to use the fancy geometry, but
the basic knowledge of complex analysis, which you’ve got.

1 Introduction

For this argument I shall use the Riemann Functional Equation, which you could
simply find in Titchmarch’s book or in the artice in Wikipedia, which refers to
the book anyway. The Riemann Functional Equation is the following:

ζ(s) = 2sπs−1 sin πs
2 Γ(1− s)ζ(1− s).

Also I shall use the Schwarz Reflection principle, which states the following:

∀f ∈ A(Ω)d ∈ R : d ∈ Ω, f(d) ∈ R =⇒ ∀z ∈ Ωf(z̄) = ¯f(z).

Moreover I would use ABC zeta-function and for the simplicity of notation I
would sign the integral part as o(1).

2 Studying the limit part of equation

In this section we would state that limk→∞
∑k

n=1(
1
ns− 1

n1−s̄ ) = 0 =⇒ ℜ(s) = 1
2 .

Lemma 1. The Super Symmetric equation holds only for ℜ(s) = 1
2 .

Proof. Without loss of generality let us assume that 1−ℜs > ℜs since with the
substitution s′ = 1 − s we would obtain the similar contradiction construction
for the opposite inequality. Let us write ABC zeta-function for s and 1− s̄:

ζ(s) =

k∑
n=1

1
ns − k1−s

1−s + o(1),
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ζ(1− s̄) =

k∑
n=1

1
n1−s̄ − ks̄

s̄ .

Now let us subtract both equations with respect to the condition ζ(s)−ζ(1−s̄) =
0 and put the sums to the Left Hand Side:

k∑
n=1

1
ns −

k∑
n=1

1
n1−s̄ = k1−s

1−s − ks̄

s̄ + o(1).

Since 1−ℜ(s) > 0 we may deduce limk→∞ |k
1−s

1−s | = +∞. Then as limk→∞
∑k

n=1(
1
ns−

1
n1−s̄ ) = 0 we conclude that

∑k
n=1(

1
ns − 1

n1−s̄ ) = o(k
1−s

1−s ). From the assumption

1 − ℜ(s) > ℜ(s) we obtain ks̄

s̄ = o(k
1−s

1−s ). Now let us divide both parts of this

equality by k1−s

1−s and take the limit of our equality. With respect to our previous
observations we obtain:

0 = 1,

which is a contradiction. Hence ℜ(s) = 1
2 .

Notice that Lemma 1 was also proven in your video on The Proof Of Riemann
Hypothesis, so you can’t argue with that. Conversely, let us prove that ℜ(s) =
1
2 =⇒ limk→∞

∑k
n=1(

1
ns − 1

n1−s̄ ) = 0, which is understood by you as
∑∞

n=1
1
ns −∑∞

n=1
1

n1−s̄ = 0 according to your videos and the reasoning on your website.

Lemma 2. ℜ(s) = 1
2 =⇒ limk→∞

∑k
n=1(

1
ns − 1

n1−s̄ ) = 0.

Proof. Let us notice that for ℜ(s) = 1
2 if we set s = d+it we would conclude the

following: s = 1
2 + it and 1− s̄ = 1− ¯(s) = 1− ¯( 12 + it) = 1− 1

2 + it = s. Hence
the wanted sequence becomes the constant zero sequence, which is convergent
to zero as the constant zero sequence.

3 Reformulating the problem

In the previous section we have shown the equivalence ℜ(s) = 1
2 ⇐⇒ limk→∞(

∑k
n=1

1
ns−∑k

n=1
1

n1−s̄ ) = 0, since we have proven the two-sided implication by Lemma 1
and Lemma 2. By the transitivity of equivalence it is enough to show that the
equivalence ζ(s) − ζ(1 − s̄) = 0 ⇐⇒ ℜ(s) = 1

2 is false. For the needs of this
section we shall introduce the following function:

Φ(s) := 2sπs−1 sin πs
2 Γ(1− s),

which we shall refer to. Notice that Riemann zeta-function has got no real
zeroes in the critical strip, which makes the following argument possible.

Lemma 3. Φ(s) and Φ(1− s) are multiplicative inverses.
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Proof. Let us express Φ(s) with respect to Riemann functional equation and
use it again for ζ(1− s):

ζ(s) = Φ(s)ζ(1− s) = Φ(s)Φ(1− s)ζ(s) ⇐⇒ Φ(s)Φ(1− s) = 1

Now we would look for our counter-example as a curve, which does not lie on
the critical line, but also satisfies the wanted identity. For this purpose we would
need one lemma, which justifies the counter-example we would find further.

Lemma 4. Suppose that the function f : (−L,L) → C, 0 < L ≤ π is analytical
in some neighbourhood of the real interval and satisfies the following functional
equation:

f(t) = −eitf(−t).

Then f is identical zero function.

Proof. Consider function f as an element of Hilbert space L2((−π, π)) by contin-
uing it outside of (−L,L) by zero, if it is needed. Then because it is analytical,
its Fourier series would be convergent at the domain (−L,L) to the function
f homogeneously and its Fourier series admits the termwise differentiation and
the termwise derivative of the Fourier series of F is convergent to the derivative
of f . Now let us represent the function f as follows:

f(t) =

∞∑
n=−∞

cne
int.

By substituting this into the original equation we observe:

∞∑
n=−∞

cne
int = −

∞∑
n=−∞

cne
i(1−n)t,

∞∑
n=−∞

cn(e
int + ei(1−n)t) = 0.

Divide this equation by e
it
2 and apply the Euler’s formula for representation of

cosine function:
∞∑

n=−∞
cn(e

i(n− 1
2 )t + ei(

1
2−n)t) = 0,

2

∞∑
n=−∞

cn cos (n− 1
2 )t = 0,

∞∑
n=−∞

cn cos (n− 1
2 )t = 0.

Since the system cos (n− 1
2 )t|n∈Z is linear independent we deduce that ∀n ∈

Zcn = 0, which proves the lemma statement.
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4 Building the counter-example

Lemma 4 introduced us the sufficient condition of our curve to be the curve
of counter-examples. However, it is not necessary, which I point to avoid the
discussion of ”counter-examples” to my statement. For the simplicity we shall
study the equation Φ(s) = eiα for some α ∈ R. Let us study this equation from
the geometric perspective.

Lemma 5. The equation Φ(s) = eiα, α ∈ U ⊂ R defines at least one analytical
curve on the complex plain s(α), where U is some real symmetric interval,
containing 0.

Proof. Let us rewrite this equation in the following form:

F (α, s) := e−iαΦ(s)− 1 = 0.

Take the derivative of F with respect to s:

d
dsF (α, s) = e−iαΦ

′
(s).

Since Φ(s) is a non-constant analytical function, the zeroes of Φ
′
(s) would be

a set of izolated points. Therefore in the neighbourhood of any point on the
complex plain we can find a point, where Φ

′
(s) ̸= 0. Hence, by the Implicit

Function Theorem we obtain the statement of the lemma.
Notice that this Lemma could be proven in another way, but with the slight

usage of mathematical engines. It is easy to check that |πΦ′
( 12 )| > 15, which

means that Φ
′
is non-zero in some neighbourhood of 1

2 . Therefore, due to the
Lagrange Inversion Theorem, there exists a local inverse G : Φ(V ) → V , where
V is a neighbourhood of 1

2 , where Φ
′
(s) ̸= 0. Since ei0 = 1 = Φ( 12 ), by the

continuity of eiα there would exist the containing zero real interval L ⊂ R :
eiL ⊂ Φ(V ) and hence the curve s(α) = G(eiα), α ∈ L is well defined.

The next thing we would like to show is that the real component of this
curve is non-constant.

Lemma 6. Let s(α) = l(α) + it(α) be a curve, defined by the equation Φ(s) =
eiα, α ∈ L such that s(0) = 1

2 . Then l(α) ̸= const.

Proof. By the way of contradiction let us assume that l(α) = 1
2 = const. Let

us take the derivative of this equation with respect to α:

it
′
(α)Φ

′
( 12 + it(α)) = ieiα,

it
′
(α)Φ

′
( 12 + it(α)) = iΦ( 12 + it(α)),

t
′
(α)Φ

′
( 12 + it(α)) = Φ(12 + it(α)).

Take t(α) to be an odd parameterization of the imaginary part of the curve,
since e−iα is conjugated to eiα and it preserves conjugation by the Schwarz
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Reflection Principle. Then by the Schwarz reflection principle ℑ[Φ( 12 + it(α))]
is an odd function. But the derivative of this function with respect to it(α), i.e.
ℑ[Φ′

( 12 + it(α))] should be even as the derivative of an odd function. Therefore

t
′
(α)Φ

′
( 12 + it(α)) is an even function as the product of two even functions since

t
′
(α) is even as the derivative of an odd function. This means that ℑ[Φ( 12 +

it(α))] is even and odd at the same time, which is only possible for the constant
zero function. But ℑ[Φ( 12 + it(α)))] = sinα ̸= 0 constantly by the construction,
hence we obtain a contradiction. This means that l(α) ̸= const.

In addition let us prove separately two facts that we have used: that the
zero is the only function, which is odd and even at the same time and that the
derrivative of an odd function is even.

Let us prove that zero is the only function, which is odd and even at the
same time. Suppose that some non-zero function f is odd and even at the same
time. From evenness we obtain the following representation:

f(z) = f(z)+f(−z)
2 .

On the other hand we can obtain from the oddness:

f(z) = f(z)−f(−z)
2 .

Now let us subtract the second equation from the first and obtain:

0 = f(−z).

Since it is true for any z we would obtain that f is a constant zero function.
Now let us suppose that f is an odd function. Then by the definition we

obtain:
f(z) = f(z)−f(−z)

2 .

After differentiating we obtain by the chain rule:

f
′
(z) = f

′
(z)+f

′
(−z)

2 ,

which means that f
′
is even by the definition.

Therefore we have obtained that there exists a curve of counter-examples
along the curve from Lemma6.

Lemma 7. Let s(α) be a curve from the Lemma 6. Then s
′
(α) ̸= 0 and

Φ
′
(s(α)) ̸= 0 for all α ∈ L, where L is the same as in the proof of Lemma 5.

Proof. Take the derivative of both parts with respect to α of both parts of the
equation Φ(s(α)) = eiα and obtain:

s
′
(α)Φ

′
(s(α)) = ieiα.

Since the exponential function is never zero and the product is zero if one of the
multiples is zero, we obtain the statement of the lemma.
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The Lemma 7 guarantees the existence of at least one analytical local inverse
function to Φ(s) by the Lagrange Inversion Theorem. Then it would preserve
our curve and we could find the closed formula for the parametrization of the
curve from Lemma 6 as follows:

s(α) = G(eiα), α ∈ L. (1)

Now it is left to check that this curve satisfies the condition ζ(s(α)) − ζ(1 −
s̄(α)) = 0, which can be rewritten as follows with respect to our parametrization
as follows.

ζ(s(α))− ζ(1− s(−α)) = 0.

Denote f(α) = ζ(s(α))−ζ(1−s(−α)) and prove that it should be a constant zero
function. Note that f is an analytical function as a composition of analytical
functions. From Lemma 3 and the condition |Φ(s(α))| = 1 we deduce that
Φ(1 − s(α)) = Φ(s(−α)) by the uniqueness of multiplicative inverse. Now let
us write the Riemann functional equation for ζ(s(α)) and ζ(1 − s(−α)) with
respect to our parametrization:

ζ(s(α)) = eiαζ(1− s(α)),

ζ(1− s(−α)) = eiαζ(s(−α)).

Subtract the second equation from the first and obtain:

f(α) = −eiαf(−α).

Since f satisfies the equation from Lemma 4, it is a constant zero function,
which guarantees that along this curve ζ(s) − ζ(1 − s̄) = 0 is satisfied. The
numerical counter-example then could be represented as follows as this curve
does not lie on the critical line by Lemma 6.

s(arg(−π,π) max |ℜs(α)− 1
2 |)

5 The numeical counter-example

We are able to implement this approach with the following Python code.

import numpy as np
from mpmath import mp, f i ndroo t , ze ta
from sc ipy import p i

mp. dps = 25

de f Phi ( s ) : #computing Phi
re turn 2∗∗ s ∗ mp. p i ∗∗( s−1) ∗ mp. s i n ( p i ∗ s /2) ∗ mp.gamma(1− s )

de f Phi inv (x ) : #f i nd i n g the i nv e r s e to Phi
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de f equat ion ( s ) :
r e turn Phi ( s ) − x

s o l = f i nd r o o t ( equation , 0.5−1 j , s o l v e r =’muller ’ )
r e turn s o l

x = np . l i n s p a c e (−pi , pi , 12345) #Take 12345 po in t s on the i n t e r v a l (0 , p i )
Ph i i nv va lu e s = [ Phi inv (np . exp (1 j ∗ x i ) ) f o r x i in x ] #compute the va lue s o f Phi
max dis tance index = np . argmax (np . abs (np . r e a l ( Ph i i nv va lu e s ) − 1 / 2))# look f o r the b i g g e s t d i f f e r e n c e
max di s tance s = Ph i i nv va lu e s [ max di s tance index ]#computing s

r e s u l t = zeta ( max di s tance s ) − ze ta (1 − max di s tance s . conjugate ())# check the value o f zeta−f unc t i on d i f f e r e n c e

p r i n t (” Zeta d i f f =”, r e s u l t )
p r i n t (” s=”, max di s tance s )

As the outcome we obtain the following.

Zeta d i f f= (1.547884914737994169942074 e−16 + 8.215941637586319572066491 e−17 j )
s= (0.5000000000000005076299623 − 4.019582094328109725710068 j )

As you see, the difference of zeta-functions is extremely low. We use the Muller’s
algorithm to construct the inverse function. You can see that the deviation from
the critical line is extremely high. If you were correct in your conclusions, then
the Muller’s algorithm would leave the real part of the variable untouched, since
by the iteration form as we have supposed in our initial approximation that
the real part of the variable is 0.5. See the quadratic equation that runs the
Muller’s recurrence formula. Therefore, if you were correct, we would not have
obtained even the smallest stray. And just for controlling we have computed the
value of your difference in that point and saw that it is extremely close to zero.
But of course, we could not obtain the precise value, since we have computed
the approximation of zeta-function in the approximation of zero of the desired
function.

6 What went wrong

The problem is that you do not understand the concept of analytic continua-
tion. The analytic continuation does not imply that you are able to study the
divergent representation of some analytic function. To be the most accurate, let
me show one counter-example, where such claim ruins all of the mathematics,
if it is correct. In my most recent preprint on the Riemann Hypothesis I have
shown that the series

∞∑
k=1

(−1)k+1

k
s+

3
4

lk(θ̄0),

where ln(θ̄) =
∏

p∈P e−i2πmp(n)θ
(q(p))

, P is the set of all prime numbers, q(p)
is the number of the prime number p in the ordered set of prime numbers
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and mp(n) is the multiplicity of the prime number p in the factorization of n,
θ̄0 = ( 14 ,

2
4 ,

3
4 , ...) can be rearranged to be convergent to any analytic function in

the space A(|z| < r) in this domain. We also know that for ℜ(s) > 1
4 this se-

ries is absolutely convergent. As you know, the rearrangement o the absolutely
convergent series does not influence this sum. Therefore, by your logic, using
the Identity theorem (of course, not the correct one, but your understanding of
it), we deduce that any analytic function is equal to any other analytic func-
tion, which is nonsense. Stop mixing up the notions of the function and the
representation of the function!
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