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Abstract

Dear Aric, after a poorly slept night I have come up with idea of
constructing counter-example to your statement. Moreover, I shall avoid
the moments of which we argued since we have not come to understanding.
Hope this will satisfy you. I decided not to use the fancy geometry, but
the basic knowledge of complex analysis, which you’ve got.

1 Introduction

For this argument I shall use the Riemann Functional Equation, which you could
simply find in Titchmarch’s book or in the artice in Wikipedia, which refers to
the book anyway. The Riemann Functional Equation is the following:

ζ(s) = 2sπs−1 sin πs
2 Γ(1− s)ζ(1− s).

Also I shall use the Schwarz Reflection principle, which states the following:

∀f ∈ A(Ω)d ∈ R : d ∈ Ω, f(d) ∈ R =⇒ ∀z ∈ Ωf(z̄) = ¯f(z).

Moreover I would use ABC zeta-function and for the simplicity of notation I
would sign the integral part as o(1).

2 Studying the limit part of equation

In this section we would state that limk→∞
∑k

n=1(
1
ns− 1

n1−s̄ ) = 0 =⇒ ℜ(s) = 1
2 .

Lemma 1. The Super Symmetric equation holds only for ℜ(s) = 1
2 .

Proof. Without loss of generality let us assume that 1−ℜs > ℜs since with the
substitution s′ = 1 − s we would obtain the similar contradiction construction
for the opposite inequality. Let us write ABC zeta-function for s and 1− s̄:

ζ(s) =

k∑
n=1

1
ns − k1−s

1−s + o(1),
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ζ(1− s̄) =

k∑
n=1

1
n1−s̄ − ks̄

s̄ .

Now let us subtract both equations with respect to the condition ζ(s)−ζ(1−s̄) =
0 and put the sums to the Left Hand Side:

k∑
n=1

1
ns −

k∑
n=1

1
n1−s̄ = k1−s

1−s − ks̄

s̄ + o(1).

Since 1−ℜ(s) > 0 we may deduce limk→∞ |k
1−s

1−s | = +∞. Then as limk→∞
∑k

n=1(
1
ns−

1
n1−s̄ ) = 0 we conclude that

∑k
n=1(

1
ns − 1

n1−s̄ ) = o(k
1−s

1−s ). From the assumption

1 − ℜ(s) > ℜ(s) we obtain ks̄

s̄ = o(k
1−s

1−s ). Now let us divide both parts of this

equality by k1−s

1−s and take the limit of our equality. With respect to our previous
observations we obtain:

0 = 1,

which is a contradiction. Hence ℜ(s) = 1
2 .

Notice that Lemma 1 was also proven in your video on The Proof Of Riemann
Hypothesis, so you can’t argue with that. Conversely, let us prove that ℜ(s) =
1
2 =⇒ limk→∞

∑k
n=1(

1
ns − 1

n1−s̄ ) = 0, which is understood by you as
∑∞

n=1
1
ns −∑∞

n=1
1

n1−s̄ = 0 according to your videos and the reasoning on your website.

Lemma 2. ℜ(s) = 1
2 =⇒ limk→∞

∑k
n=1(

1
ns − 1

n1−s̄ ) = 0.

Proof. Let us notice that for ℜ(s) = 1
2 if we set s = d+it we would conclude the

following: s = 1
2 + it and 1− s̄ = 1− ¯(s) = 1− ¯( 12 + it) = 1− 1

2 + it = s. Hence
the wanted sequence becomes the constant zero sequence, which is convergent
to zero as the constant zero sequence.

3 Reformulating the problem

In the previous section we have shown the equivalence ℜ(s) = 1
2 ⇐⇒

∑∞
n=1

1
ns−∑∞

n=1
1

n1−s̄ = 0, since we have proven the two-sided implication by Lemma 1
and Lemma 2. By the transitivity of equivalence it is enough to show that the
equivalence ζ(s) − ζ(1 − s̄) = 0 ⇐⇒ ℜ(s) = 1

2 is false. For the needs of this
section we shall introduce the following function:

Φ(s) := 2sπs−1 sin πs
2 Γ(1− s),

which we shall refer to. Notice that Riemann zeta-function has got no real
zeroes in the critical strip, which makes the following argument possible.

Lemma 3. Φ(s) and Φ(1− s) are multiplicative inverses.
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Proof. Let us express Φ(s) with respect to Riemann functional equation and
use it again for ζ(1− s):

ζ(s) = Φ(s)ζ(1− s) = Φ(s)Φ(1− s)ζ(s) ⇐⇒ Φ(s)Φ(1− s) = 1

Lemma 4. Let ϵ > 0 be the imaginary part of the closest to the real line point,
where ζ(s) = 0 in the critical strip. Then ζ(s) − ζ(1 − s̄) = 0 ⇐⇒ |Φ(s)| = 1
in the domain {s|ℜ(s) ∈ (0, 1),ℑ(s) ∈ (−ϵ, ϵ).

Proof. Firstly, let us prove the implication ζ(s)− ζ(1− s̄) = 0 =⇒ |Φ(s)| = 1.
Since ζ(s) = ζ(1−s̄) we may deduce that |ζ(s)| = |ζ(1−s̄)| = |ζ(1−s)| according
to the Schwarz reflection principle. Now let us write the Riemann functional
equation and take the absolute value of the both parts:

|ζ(s)| = |Φ(s)||ζ(1− s)| = |Φ(s)||ζ(s)|.

Since |ζ(s)| ≠ 0 in the considered domain, divide both parts by |ζ(s)| and obtain
|Φ(s)| = 1.

Let us now prove the implication |Φ(s)| = 1 =⇒ ζ(s) − ζ(1 − s̄) = 0. Let
us write the Riemann functional equation for ζ(s̄) considering Φ(1− s̄) = Φ(s)
and Φ(1− s) = Φ(s̄) by the uniqueness of multiplicative inverses:

ζ(s) = Φ(s)ζ(1− s), (1)

ζ(1− s̄) = Φ(s)ζ(s̄). (2)

Subtract (2) from (1) and obtain and notice that Φ(s) = ζ(s)
ζ(1−s) =

ζ(1−s̄)
ζ(s̄) :

ζ(s)− ζ(1− s̄) = Φ(s)[ζ(1− s)− ζ(s̄)].

Notice that |Φ(s)| = 1 =⇒ Φ(s̄) = 1
Φ(s̄) . Multiply both parts of this equation

by
√
Φ(s̄) and denote Ψ(s) :=

√
Φ(s̄)[ζ(s) − ζ(1 − s̄)]. Then this equality

becomes the following:
Ψ(s) = −Ψ(s̄). (3)

From this we conclude that Ψ(s) is purely imaginary with respect to the Schwarz
reflection principle and the fact that complex conjugation preserves sums and
products. Let us square both sides of this equality and obtain:

Φ(s̄)[ζ(s)− ζ(1− s̄)]2 = Φ(s)[ζ(1− s)− ζ(s̄)]2.

Multiply and divide the Right Hand Side by Φ2(s̄)

Φ(s̄)[ζ(s)− ζ(1− s̄)]2 = Φ3(s)[ζ(s)− ζ(1− s̄)]2,

(Φ4(s)− 1)[ζ(s)− ζ(1− s̄)]2 = 0.

Hence we are left to check the case when Φ4(s) = 1 since in other cases the
statement is definitely true by this equation.
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Notice that H(s) := (Φ4(s)− 1)[ζ(s)− ζ(1− s̄)]2 is a continuous function as
the product of linear combinations of continuous functions. Since the wanted
equivalence is true for {s|Φ4(s) = 1}, which is the set of isolated points by the
Theorem of Uniqueness, since in other case Φ(s) would be a constant, by the
continuity of H(s) we may deduce that ζ(s) − ζ(1 − s̄) = 0 in these points as
well, since it is true for any arbitrary small neighbourhood of these points on
the curve |Φ(s)| = 1 by continuity. Therefore the equivalence is proven.

4 Building the counter-example

Lemma 4 introduced us the equivalence ζ(s) − ζ(1 − s̄) = 0 ⇐⇒ |Φ(s)| = 1
for some neighbourhood of the real part of the critical strip, which does not
contain zeroes of Riemann zeta-function. By the polar representation of the
complex numbers we need to study the values of the variable, which can satisfy
the equation Φ(s) = eiα for some α ∈ R. Let us study this equation from the
geometric perspective.

Lemma 5. The equation Φ(s) = eiα, α ∈ R defines at least one analytical curve
on the complex plain s(α).

Proof. Let us rewrite this equation in the following form:

F (α, s) := e−iαΦ(s)− 1 = 0.

Take the derivative of F with respect to s:

d
dsF (α, s) = e−iαΦ

′
(s).

Since Φ(s) is a non-constant analytical function, the zeroes of Φ
′
(s) would be

a set of izolated points. Therefore in the neighbourhood of any point on the
complex plain we can find a point, where Φ

′
(s) ̸= 0. Hence by the Implicit

Function Theorem we obtain the statement of the lemma.

The next thing we would like to show is that the real component of this
curve is non-constant.

Lemma 6. Let s(α) = l(α) + it(α) be a curve, defined by the equation Φ(s) =
eiα, α ∈ (−π, π) such that s(0) = 1

2 . Then l(α) ̸= const.

Proof. By the way of contradiction let us assume that l(α) = 1
2 = const. Let

us take the derivative of this equation with respect to α:

it
′
(α)Φ

′
( 12 + it(α)) = ieiα,

it
′
(α)Φ

′
( 12 + it(α)) = iΦ( 12 + it(α)),

t
′
(α)Φ

′
( 12 + it(α)) = Φ(12 + it(α)).
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Take t(α) to be an odd parameterization of the imaginary part of the curve,
since e−iα is conjugated to eiα and it preserves conjugation by the Schwarz
Reflection Principle. Then by the Schwarz reflection principle ℑ[Φ( 12 + it(α))]
is an odd function. But the derivative of this function with respect to it(α), i.e.
ℑ[Φ′

( 12 + it(α))] should be even as the derivative of an odd function. Therefore

t
′
(α)Φ

′
( 12 + it(α)) is an even function as the product of two even functions since

t
′
(α) is even as the derivative of an odd function. This means that ℑ[Φ( 12 +

it(α))] is even and odd at the same time, which is only possible for the constant
zero function. But ℑ[Φ( 12 + it(α)))] = sinα ̸= 0 constantly by the construction,
hence we obtain a contradiction. This means that l(α) ̸= const.

Therefore we have proven that the counter-example exists, since the real
component of such curve cannot be a constant function. This means that an
analytical curve, parameterized in such a way, cannot lie on the critical line.
Hence your equivalence is false as ζ(s) − ζ(1 − s̄) = 0 ⇐⇒ |Φ(s)| = 1, but
it is not true that |Φ(s)| = 1 ⇐⇒ ℜ(s) = 1

2 by the Lemma 4 at least in
the zero-free domain of the zeta-function. The Lemma 6 shows that in any
arbitrary small subdomain, including a line segment of ℜ(s) = 1

2 such that
a point 1

2 belongs to this domain you can find a continuous set of counter-
examples to your statement. But let us follow the rules of your contest and
provide a numerical counter-example using these statements. For this reason
we would need one more lemma.

Lemma 7. Let s(α) be a curve from the Lemma 6. Then s
′
(α) ̸= 0 and

Φ
′
(s(α)) ̸= 0 for all α ∈ (−π, π).

Proof. Take the derivative of both parts with respect to α of both parts of the
equation Φ(s(α)) = eiα and obtain:

s
′
(α)Φ

′
(s(α)) = ieiα.

Since the exponential function is never zero and the product is zero if one of the
multiples is zero, we obtain the statement of the lemma.

The Lemma 7 guarantees the existence of at least one analytical inverse
function to Φ(s) by the Lagrange Inversion Theorem. Let us pick an inverse
and denote it by G with the property G(1) = 1

2 . Then it would preserve our
curve and we could find the closed formula for the parameterization of the curve
from Lemma 6 as follows:

s(α) = G(eiα), α ∈ (−π, π). (4)

Notice that (4) defines an analytical curve without intersection with itself as a
composition of injective functions on the wanted interval. Hence we are able to
construct our counter-example as follows, which can be approximated with big
enough computation powers:

s(argα∈Πs
max |ℜs(α)− 1

2 |),
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where Πs := ¯{α|s(α) ∈ {s|ℜ(s) ∈ (0, 1),ℑ(s) ∈ (−ϵ, ϵ)}, α ∈ (−π, π)} and ϵ
is the smallest positive imaginary part of the non-trivial zero of Riemann zeta-
function.

5 A counter-example to the reasoning of your
proof

Dear Aric, you’ve done an incredible work, but I have found one weak spot
in your reasoning. I have provided you a full theoretical reasoning of what is
wrong, but now I want to show you why such an extension of summation by the
analytical continuation is not possible, since analytical continuation does not
preserve the series structure. Let us study the example of ζ(0) = 1

2 , but we are
enough to know that it is defined. Following your notation we may obtain:

ζ(0) =

∞∑
n=1

1 = 1 +

∞∑
n=2

1 = 1 +

∞∑
n=1

1 = 1 + ζ(0),

⇐⇒ 0 = 1.

Hence we cannot extend the analytical continuation for series.
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