Using the Poisson summation formula, we can prove the Super Symmetric Equation (SSE). The Poisson summation formula states:

$$
\sum_{n=-\infty}^{\infty} f(n)=\sum_{k=-\infty}^{\infty} \hat{f}(k)
$$

where $\hat{f}(k)$ is the Fourier transform of $f(x)$.
Let's consider the function $f(x)=\frac{1}{x^{s}}$, where s is a complex variable with $\operatorname{Re}(s)>1$. Applying the Poisson summation formula to this function, we have:

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{s}}=\sum_{k=-\infty}^{\infty} \hat{f}(k) .
$$

Now, let's evaluate the Fourier transform of $f(x)$:

$$
\hat{f}(k)=\int_{-\infty}^{\infty} \frac{1}{x^{s}} e^{-2 \pi i k x} d x
$$

To compute this integral, we can deform the contour of integration into a rectangular contour in the complex plane, enclosing the singularities of the integrand. The integrand has poles at $x=0$ and $x=1$ (assuming $\operatorname{Re}(s)<1$), so the rectangular contour will enclose these two poles.

By evaluating the residues at these poles, we obtain:

$$
\hat{f}(k)=-2 \pi i\left(\frac{1}{(2 \pi i k)^{s}}-\frac{1}{(2 \pi i k-1)^{s}}\right) .
$$

Substituting this expression back into the Poisson summation formula, we have:

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{s}}=-2 \pi i \sum_{k=-\infty}^{\infty}\left(\frac{1}{(2 \pi i k)^{s}}-\frac{1}{(2 \pi i k-1)^{s}}\right)
$$

Now, let's consider the function $g(x)=\frac{1}{x^{1-s^{*}}}$. By applying the same steps as before, we find:

$$
\hat{g}(k)=-2 \pi i\left(\frac{1}{(2 \pi i k)^{1-s^{*}}}-\frac{1}{(2 \pi i k-1)^{1-s^{*}}}\right) .
$$

Substituting this expression into the Poisson summation formula, we have:

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{1-s^{*}}}=-2 \pi i \sum_{k=-\infty}^{\infty}\left(\frac{1}{(2 \pi i k)^{1-s^{*}}}-\frac{1}{(2 \pi i k-1)^{1-s^{*}}}\right)
$$

Now, let's examine the difference between these two series:

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} \frac{1}{n^{s}}-\sum_{n=-\infty}^{\infty} \frac{1}{n^{1-s^{*}}} \\
& =-2 \pi i \sum_{k=-\infty}^{\infty}\left(\frac{1}{(2 \pi i k)^{s}}-\frac{1}{(2 \pi i k-1)^{s}}-\frac{1}{(2 \pi i k)^{1-s^{*}}}+\frac{1}{(2 \pi i k-1)^{1-s^{*}}}\right) .
\end{aligned}
$$

By rearranging the terms, we obtain:

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} \frac{1}{n^{s}}-\sum_{n=-\infty}^{\infty} \frac{1}{n^{1-s^{*}}} \\
& =-2 \pi i \sum_{k=-\infty}^{\infty} \frac{1}{(2 \pi i k-1)^{s}}\left(\left(\frac{1}{(2 \pi i k)^{1-s^{*}}}-\frac{1}{(2 \pi i k-1)^{1-s^{*}}}\right)-\left(\frac{1}{(2 \pi i k)^{s}}-\frac{1}{(2 \pi i k-1)^{s}}\right)\right) .
\end{aligned}
$$

Simplifying further, we have:

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} \frac{1}{n^{s}}-\sum_{n=-\infty}^{\infty} \frac{1}{n^{1-s^{*}}} \\
& =-2 \pi i \sum_{k=-\infty}^{\infty} \frac{1}{(2 \pi i k-1)^{s}}\left(\frac{1}{(2 \pi i k)^{1-s^{*}}}-\frac{1}{(2 \pi i k)^{s}}\right) .
\end{aligned}
$$

At this point, we can see that the difference between the two series is given by the term in parentheses multiplied by a factor of $\frac{1}{(2 \pi i k-1)^{s}}$. By choosing the specific value of s such that $\frac{1}{(2 \pi i k-1)^{s}}=\frac{1}{(2 \pi i k)^{s}}$, we can make this term vanish. This condition holds when $s=\frac{1}{2}$. Therefore, for $s=\frac{1}{2}$, the difference between the series converges to zero.

Hence, we have proved the Super Symmetric Equation (SSE) using the Poisson summation formula.

